Patents by Inventor Greg Young

Greg Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230420715
    Abstract: A fuel cell system includes at least one electrochemical pump separator to separate hydrogen and carbon dioxide from a fuel exhaust stream.
    Type: Application
    Filed: December 8, 2022
    Publication date: December 28, 2023
    Inventors: David WEINGAERTNER, Greg YOUNG, Vijay SRIVATSAN, Michael PETRUCHA
  • Patent number: 11777125
    Abstract: A fuel cell system includes at least one of plural electrochemical pump separators to separate carbon dioxide from a fuel exhaust stream or a combination of a gas separator and a fuel exhaust cooler located outside a hotbox.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: October 3, 2023
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: David Weingaertner, Matthias Gottmann, Jayakumar Krishnadass, Chockkalingam Karuppaiah, Arne Ballantine, Swaminathan Venkataraman, Martin Perry, John Fisher, Greg Young
  • Publication number: 20220336837
    Abstract: A fuel cell system includes at least one of plural electrochemical pump separators to separate carbon dioxide from a fuel exhaust stream or a combination of a gas separator and a fuel exhaust cooler located outside a hotbox.
    Type: Application
    Filed: May 2, 2022
    Publication date: October 20, 2022
    Inventors: David WEINGAERTNER, Matthias GOTTMANN, Jayakumar KRISHNADASS, Chockkalingam KARUPPAIAH, Arne BALLANTINE, Swaminathan VENKATARAMAN, Martin PERRY, John FISHER, Greg YOUNG
  • Patent number: 11415399
    Abstract: Exemplary embodiments of an ignition apparatus are disclosed herein. Each ignition apparatus is configured for use in a projectile, such as an artillery projectile, rocket, missile, drone, and other similar projectiles. In each exemplary embodiment disclosed herein, the ignition apparatus initiates an ignition sequence that is the reverse of the ignition sequences implemented by conventional ignition devices that utilize pre-loaded or pre-compressed spring-operated firing pins. Each exemplary embodiment of the ignition apparatus disclosed herein utilizes the extreme axial acceleration of the projectile to arm and initiate the ignition sequence.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: August 16, 2022
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Kyle Matthew Beckett, Earle Monroe Sparks, Xavier Omar Velez-Ocasio, David Reinaldo Gonzalez, Greg Young
  • Patent number: 11322767
    Abstract: A fuel cell system includes at least one of plural electrochemical pump separators to separate carbon dioxide from a fuel exhaust stream or a combination of a gas separator and a fuel exhaust cooler located outside a hotbox.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: May 3, 2022
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: David Weingaertner, Matthias Gottmann, Jayakumar Krishnadass, Chockkalingam Karuppaiah, Arne Ballantine, Swaminathan Venkataraman, Martin Perry, John Fisher, Greg Young
  • Patent number: 11063671
    Abstract: Methods and systems for redundant light sources by utilizing two inputs of an integrated modulator are disclosed and may include: an optoelectronic transmitter with first and second laser sources for providing optical signals to the transmitter, the transmitter comprising an optical modulator with a first input waveguide coupled to the first laser source and second input waveguide coupled to the second laser source, the optoelectronic receiver being operable to: configure the first laser source to provide an optical signal to the first input of the optical modulator; and if the first laser source does not provide an optical signal, configure the second laser source to provide an optical signal to the second input of the optical modulator. The first laser source may be optically coupled to the first input waveguide and the second laser source optically coupled to the second input waveguide using grating couplers.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: July 13, 2021
    Assignee: Luxtera LLC
    Inventors: Greg Young, Peter DeDobbelaere
  • Patent number: 10873399
    Abstract: Methods and systems for a photonic interposer may include receiving a continuous wave (CW) optical signal in a silicon photonic interposer from an optical source. A modulated optical signal may be generated by processing the received CW optical signal based on a first electrical signal received from an electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signal, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of a processor core, a switch core, memory, or a router.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: December 22, 2020
    Assignee: Luxtera LLC
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere
  • Publication number: 20200328445
    Abstract: A fuel cell system includes at least one of plural electrochemical pump separators to separate carbon dioxide from a fuel exhaust stream or a combination of a gas separator and a fuel exhaust cooler located outside a hotbox.
    Type: Application
    Filed: April 6, 2020
    Publication date: October 15, 2020
    Inventors: David WEINGAERTNER, Matthias GOTTMANN, Jayakumar KRISHNADASS, Chockkalingam KARUPPAIAH, Arne BALLANTINE, Swaminathan VENKATARAMAMAN, Martin PERRY, John FISHER, Greg YOUNG
  • Publication number: 20200186252
    Abstract: Methods and systems for redundant light sources by utilizing two inputs of an integrated modulator are disclosed and may include: an optoelectronic transmitter with first and second laser sources for providing optical signals to the transmitter, the transmitter comprising an optical modulator with a first input waveguide coupled to the first laser source and second input waveguide coupled to the second laser source, the optoelectronic receiver being operable to: configure the first laser source to provide an optical signal to the first input of the optical modulator; and if the first laser source does not provide an optical signal, configure the second laser source to provide an optical signal to the second input of the optical modulator. The first laser source may be optically coupled to the first input waveguide and the second laser source optically coupled to the second input waveguide using grating couplers.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Greg Young, Peter DeDobbelaere
  • Patent number: 10567086
    Abstract: Methods and systems for redundant light sources by utilizing two inputs of an integrated modulator are disclosed and may include: an optoelectronic transmitter in a semiconductor die with first and second laser sources for providing optical signals to the semiconductor die, the transmitter comprising an optical modulator with a first input waveguide coupled to the first laser source and second input waveguide coupled to the second laser source, the optoelectronic receiver being operable to: configure the first laser source to provide an optical signal to the first input of the optical modulator; and if the first laser source does not provide an optical signal, configure the second laser source to provide an optical signal to the second input of the optical modulator. The first laser source may be optically coupled to the first input waveguide and the second laser source optically coupled to the second input waveguide using grating couplers.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: February 18, 2020
    Assignee: Luxtera, Inc.
    Inventors: Greg Young, Peter DeDobbelaere
  • Publication number: 20190363797
    Abstract: Methods and systems for a photonic interposer may include receiving a continuous wave (CW) optical signal in a silicon photonic interposer from an optical source. A modulated optical signal may be generated by processing the received CW optical signal based on a first electrical signal received from an electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signal, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of a processor core, a switch core, memory, or a router.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere
  • Patent number: 10439727
    Abstract: Methods and systems for selectable parallel optical fiber and WDM operation may include an optoelectronic transceiver integrated in a silicon photonics die. The optoelectronic transceiver may, in a first communication mode, communicate continuous wave (CW) optical signals from an optical source module to a first subset of optical couplers on the die for processing signals in optical modulators in accordance with a first communications protocol, and in a second communication mode, communicate the CW optical signals to a second subset of optical couplers for processing signals in the optical modulators in accordance with a second communications protocol. Processed signals may be transmitted out of the die utilizing a third subset of the optical couplers. First or second protocol optical signals may be received from the fiber interface coupled to a fourth subset or a fifth subset, respectively, of the optical couplers.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 8, 2019
    Assignee: Luxtera, Inc.
    Inventors: Greg Young, Peter DeDobbelaere
  • Publication number: 20190288778
    Abstract: Methods and systems for redundant light sources by utilizing two inputs of an integrated modulator are disclosed and may include: an optoelectronic transmitter in a semiconductor die with first and second laser sources for providing optical signals to the semiconductor die, the transmitter comprising an optical modulator with a first input waveguide coupled to the first laser source and second input waveguide coupled to the second laser source, the optoelectronic receiver being operable to: configure the first laser source to provide an optical signal to the first input of the optical modulator; and if the first laser source does not provide an optical signal, configure the second laser source to provide an optical signal to the second input of the optical modulator. The first laser source may be optically coupled to the first input waveguide and the second laser source optically coupled to the second input waveguide using grating couplers.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Greg Young, Peter DeDobbelaere
  • Patent number: 10374719
    Abstract: Methods and systems for a photonic interposer are disclosed and may include receiving one or more continuous wave (CW) optical signals in a silicon photonic interposer from an external optical source, from an optical source assembly via optical fibers coupled to the silicon photonic interposer. A modulated optical signal may be generated by processing the received CW optical signals based on a first electrical signal received from the electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signals, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of: a processor core, a switch core, memory, or a router.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: August 6, 2019
    Assignee: LUXTERA, INC.
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere
  • Patent number: 10313019
    Abstract: Methods and systems for redundant light sources by utilizing two inputs of an integrated modulator are disclosed and may include: an optoelectronic transmitter integrated in a semiconductor die with first and second laser sources coupled to the semiconductor die, said optoelectronic transmitter comprising an optical modulator with a first input waveguide coupled to the first laser source and second input waveguide coupled to the second laser source, the optoelectronic receiver being operable to: configure the first laser source to provide an optical signal to the first input of the optical modulator; and if the first laser source does not provide an optical signal, configure the second laser source to provide an optical signal to the second input of the optical modulator. The first laser source may be optically coupled to the first input waveguide and the second laser source optically coupled to the second input waveguide using grating couplers.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 4, 2019
    Assignee: Luxtera, Inc.
    Inventors: Greg Young, Peter DeDobbelaere
  • Publication number: 20190123829
    Abstract: Methods and systems for selectable parallel optical fiber and WDM operation may include an optoelectronic transceiver integrated in a silicon photonics die. The optoelectronic transceiver may, in a first communication mode, communicate continuous wave (CW) optical signals from an optical source module to a first subset of optical couplers on the die for processing signals in optical modulators in accordance with a first communications protocol, and in a second communication mode, communicate the CW optical signals to a second subset of optical couplers for processing signals in the optical modulators in accordance with a second communications protocol. Processed signals may be transmitted out of the die utilizing a third subset of the optical couplers. First or second protocol optical signals may be received from the fiber interface coupled to a fourth subset or a fifth subset, respectively, of the optical couplers.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Inventors: Greg Young, Peter DeDobbelaere
  • Publication number: 20190074906
    Abstract: Methods and systems for a photonic interposer are disclosed and may include receiving one or more continuous wave (CW) optical signals in a silicon photonic interposer from an external optical source, from an optical source assembly via optical fibers coupled to the silicon photonic interposer. A modulated optical signal may be generated by processing the received CW optical signals based on a first electrical signal received from the electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signals, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of: a processor core, a switch core, memory, or a router.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere
  • Patent number: 10171171
    Abstract: Methods and systems for selectable parallel optical fiber and WDM operation may include an optoelectronic transceiver integrated in a silicon photonics die. The optoelectronic transceiver may, in a first communication mode, communicate continuous wave (CW) optical signals from an optical source module to a first subset of optical couplers on the die for processing signals in optical modulators in accordance with a first communications protocol, and in a second communication mode, communicate the CW optical signals to a second subset of optical couplers for processing signals in the optical modulators in accordance with a second communications protocol. Processed signals may be transmitted out of the die utilizing a third subset of the optical couplers. First or second protocol optical signals may be received from the fiber interface coupled to a fourth subset or a fifth subset, respectively, of the optical couplers.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 1, 2019
    Assignee: Luxtera, Inc.
    Inventors: Greg Young, Peter DeDobbelaere
  • Patent number: 10122463
    Abstract: Methods and systems for a photonic interposer are disclosed and may include receiving one or more continuous wave (CW) optical signals in a silicon photonic interposer from an external optical source, from an optical source assembly via optical fibers coupled to the silicon photonic interposer. A modulated optical signal may be generated by processing the received CW optical signals based on a first electrical signal received from the electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signals, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of: a processor core, a switch core, memory, or a router.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: November 6, 2018
    Assignee: Luxtera, Inc.
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere
  • Publication number: 20180069634
    Abstract: Methods and systems for a photonic interposer are disclosed and may include receiving one or more continuous wave (CW) optical signals in a silicon photonic interposer from an external optical source, from an optical source assembly via optical fibers coupled to the silicon photonic interposer. A modulated optical signal may be generated by processing the received CW optical signals based on a first electrical signal received from the electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signals, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of: a processor core, a switch core, memory, or a router.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 8, 2018
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere