Patents by Inventor Gregg S. Kodra

Gregg S. Kodra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010055353
    Abstract: A method and apparatus for encoding data into amplitude and pulse encoded signals begins by partially encoding a set of bits that are contained within a data stream into a pulse modulated signal. The encoding continues by amplitude modulating the pulse modulated signal to produce the amplitude and pulse encoded signal. The partial encoding of the set of bits may be done by pulse position encoding or pulse pattern encoding. Alternatively, or in addition, the amplitude of the pulse pattern may be adjusted to control the DC average of such signals.
    Type: Application
    Filed: April 4, 1998
    Publication date: December 27, 2001
    Inventors: MATHEW A. RYBICKI, H. SPENCE JACKSON, TIMOTHY W. MARKISON, GREGG S. KODRA, MICHAEL A. MARGULES
  • Patent number: 6226663
    Abstract: A method and apparatus for detecting an overflow in a data stream include processing that begins by monitoring content of a stream of data. As the content of the stream of data is being monitored, the processing provides a word length signal that has a rate corresponding to a word rate of the stream of data. When the content of the stream of data is in a first logic state for an interval between the word length signal and a previous word length signal, the processing provides an overflow indication.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: May 1, 2001
    Assignee: SigmaTel, Inc.
    Inventor: Gregg S Kodra
  • Patent number: 6212230
    Abstract: A method and apparatus for pulse position modulation begins when a digital data stream is received. The encoding process continues by obtaining a set of bits from the digital data stream and modulating the set of bits into a pulse having a pulse width. Next, a transition edge of the pulse is positioned at one of a plurality of time intervals within a time chip based on the set of bits, wherein the pulse width is greater than each of the plurality of time intervals.
    Type: Grant
    Filed: April 4, 1998
    Date of Patent: April 3, 2001
    Assignee: Sigmatel, Inc.
    Inventors: Mathew A. Rybicki, H. Spence Jackson, Timothy W. Markison, Gregg S. Kodra, Michael A. Margules
  • Patent number: 6151149
    Abstract: A method and apparatus for encoding data into a pulse pattern begins by encoding header data based on a first pulse encoding convention to produce a header pulse pattern. The resulting header pulse pattern occupies multiple time chips and indicates that subsequent pulse pattern signals are valid. After generating the header pulse pattern, a set of bits of a stream of data is encoded based on a second pulse encoding convention to produce a data pulse pattern. The data pulse pattern occupies at least one time chip. The first and second encoding conventions are used to ensure that the header data and data are encoded in distinguishing manners such that both can be accurately decoded. Such conventions include using a predetermined pulse pattern to represent the header data, which is only used for the header data.
    Type: Grant
    Filed: April 4, 1998
    Date of Patent: November 21, 2000
    Assignee: Sigmatel, INC
    Inventors: Mathew A. Rybicki, H. Spence Jackson, Timothy W. Markison, Gregg S. Kodra, Michael A. Margules
  • Patent number: 5977822
    Abstract: A method and apparatus for pulse position demodulation begins by receiving a pulse that is positioned approximately at one of a plurality of time intervals within a time chip, where the pulse has a pulse width that is greater than each of the plurality of time intervals. The decoding process then continues by determining the time interval in which a transition edge of the pulse lies. From the particular time interval, a set of bits is determined.
    Type: Grant
    Filed: April 4, 1998
    Date of Patent: November 2, 1999
    Assignee: Sigmatel, Inc.
    Inventors: Mathew A. Rybicki, H. Spence Jackson, Timothy W. Markison, Gregg S. Kodra, Michael A. Margules
  • Patent number: 5668749
    Abstract: A circuit (10) for determining a radius value and a phase value from an in-phase signal I(n) and a quadrature signal Q(n) iteratively approximates the phase value and the radius value based upon initial in-phase signal and quadrature signal preferably using the coordinate rotational digital computer (CORDIC) algorithm. The circuit (10) includes a multi-task arithmetic unit (50), memory (20), and a controller (30). The multi-task arithmetic unit includes registers (12, 14, 16), multiplexers (18, 22), shift registers (24, 25), and an adder (26) to perform various arithmetic operations. The circuit (10) further includes dynamic memory (32) for storing the solutions at different points in time of the radius value and phase value, which are subsequently used in the filtering of radius values and phase values.
    Type: Grant
    Filed: May 4, 1995
    Date of Patent: September 16, 1997
    Assignee: Motorola, Inc.
    Inventors: Jose G. Corleto, Gregg S. Kodra
  • Patent number: 5566101
    Abstract: A method and apparatus for performing finite impulse response filtering in real time is accomplished by taking advantage of symmetrical FIR coefficients of FIR filters in audio equipment. Due to the symmetry of the coefficients, each coefficient, other than the T0 coefficient, has an almost identical counterpart. Thus, only one of the identical coefficient needs to be stored and is used in conjunction with two data points. The two data points are summed together prior to multiplication by the corresponding coefficient to produce an accumulated resultant. This process repeats for each pair of data points, and corresponding FIR coefficient, until a final resultant is obtained.
    Type: Grant
    Filed: August 15, 1995
    Date of Patent: October 15, 1996
    Assignees: SigmaTel, Inc., Dallas Semiconductor Corp
    Inventor: Gregg S. Kodra
  • Patent number: 5530659
    Abstract: In a decoding apparatus (100), overflow conditions can be determined within the same clock cycle by determining the type of operation to be performed. For time sensitive operations, a load (102) and a discharge device (105) are temporarily coupled to a dynamic decoding structure (101) of the decoding apparatus (100). The load (102) and the discharge device (105) allow the decoding apparatus (100) to stabilize within a first clock phase (114) of a clock cycle. Thus, the second phase (113) of the clock cycle can be used to determine whether an overflow condition has occurred. For non-time sensitive operations, a precharge device (104) and the discharge device (105) are operably coupled to the dynamic decoding structure (101), while the load (102) is disabled.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: June 25, 1996
    Assignee: Motorola Inc.
    Inventors: Donald C. Anderson, Peter C. Curtis, Gregg S. Kodra