Patents by Inventor Gregor Schlingloff

Gregor Schlingloff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210155886
    Abstract: The invention relates to a microbioreactor assembly (01) having a plurality of microbioreactors. The microbioreactor assembly comprises a microtiter plate (02) having numerous wells (09) in a predefined grid arrangement, a closed bottom surface (14) and an open upper face. An insert unit (03) is also provided, which is arranged on the upper face of the microtiter plate (02) and has numerous inserts (11) in the same grid arrangement, each insert (11) engaging in a well (09), and the well (09) being divided into at least two regions (12, 17). Finally, the microbioreactor assembly comprises an activation unit (04), which is placed on the insert unit (03) and has numerous pumps (26), each of which is connected to supply channels (19), which allow the transport of fluid between the two regions (12, 17).
    Type: Application
    Filed: December 15, 2017
    Publication date: May 27, 2021
    Inventors: Andreas SCHOBER, Frank WEISE, Joerg HAMPL, Gregor SCHLINGLOFF
  • Patent number: 10780613
    Abstract: The present invention relates firstly to a method for reproducing a stem cell niche of an organism. The invention further relates to a reproduction of a stem cell niche of an organism. According to the invention, an image of a tissue of an organism is generated, which tissue comprises at least one stem cell niche. The image is filtered in order to obtain a structural pattern of the imaged stem cell niche. In a further step, a lithographic mask is generated from the structural pattern. According to the invention, a starting material of a substrate is structured by means of indirect or direct application of the lithographic mask, whereby a structured substrate is obtained which represents the reproduction of the imaged stem cell niche of the organism. The reproduction can be characterised as biolithomorphic.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: September 22, 2020
    Assignees: TECHNISCHE UNIVERSITAET ILMENAU, UNIVERSITAETSKLINIKUM JENA
    Inventors: Andreas Schober, Joerg Hampl, Frank Weise, Justyna Borowiec, Uta Fernekorn, Michael Gebinoga, Sukhdeep Singh, Gregor Schlingloff, Sebastian Haefner, James Beck, Angelika Mueller, Astrid Voigt
  • Publication number: 20180147751
    Abstract: The present invention relates firstly to a method for reproducing a stem cell niche of an organism. The invention further relates to a reproduction of a stem cell niche of an organism. According to the invention, an image of a tissue of an organism is generated, which tissue comprises at least one stem cell niche. The image is filtered in order to obtain a structural pattern of the imaged stem cell niche. In a further step, a lithographic mask is generated from the structural pattern. According to the invention, a starting material of a substrate is structured by means of indirect or direct application of the lithographic mask, whereby a structured substrate is obtained which represents the reproduction of the imaged stem cell niche of the organism. The reproduction can be characterised as biolithomorphic.
    Type: Application
    Filed: May 26, 2016
    Publication date: May 31, 2018
    Inventors: Andreas SCHOBER, Joerg HAMPL, Frank WEISE, Justyna BOROWIEC, Uta FERNEKORN, Michael GEBINOGA, Sukhdeep SINGH, Gregor SCHLINGLOFF, Sebastian HAEFNER, James BECK, Angelika MUELLER, Astrid VOIGT
  • Publication number: 20170274119
    Abstract: A method for replicating a structure of a biological tissue provides a plastically deformable film that is subjected to a pressure in order to press it into a mold. The mold comprises formations for pit-like depressions, recesses and notches. The recesses each border on at least one of the pit-like depressions and are opened up. The notches form at least one film hinge in the film. The shaped film is folded into a stack having at least two layers of film, the film hinge forming the folding edge for the folding process. The pit-like depressions are closed along their direction of extension by a neighboring layer of the stack and form each time a capillary. At least two of the opened recesses are arranged one on top of another and form a canal arranged perpendicular to the plane of extension of the film.
    Type: Application
    Filed: August 26, 2015
    Publication date: September 28, 2017
    Inventors: Andreas Schober, Joerg Hampl, Sebastian Haefner, Justyna Tobola, Frank Weise, Sukhdeep Singh, Gregor Schlingloff
  • Patent number: 8845911
    Abstract: A method is provided for producing a microstructured molded object that is intended for culturing of biological cells. According to this method, a plastically deformable first porous film is prepared, as well as a deformable second film and a deformable sacrificial film. The first, second and sacrificial film are placed in a stack. Next, the sacrificial film is subjected to pressure to press the stack into a mold. The mold has recesses, such that deformed regions in the form of cavities are produced in the sacrificial film, the first film and the second film, and undeformed regions remain. During the pressing of the film stack into the mold, the first film and the second film are joined to each other, so that they form a composite film. At least portions of the deformed regions of the second film are etched so that sections of the second film are chemically dissolved.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: September 30, 2014
    Assignee: Technische Universität Ilmenau
    Inventors: Joerg Hampl, Frank Weise, Gregor Schlingloff, Andreas Schober, Uta Fernekorn
  • Publication number: 20130270225
    Abstract: A method is provided for producing a microstructured molded object that is intended for culturing of biological cells. According to this method, a plastically deformable first porous film is prepared, as well as a deformable second film and a deformable sacrificial film. The first, second and sacrificial film are placed in a stack. Next, the sacrificial film is subjected to pressure to press the stack into a mold. The mold has recesses, such that deformed regions in the form of cavities are produced in the sacrificial film, the first film and the second film, and undeformed regions remain. During the pressing of the film stack into the mold, the first film and the second film are joined to each other, so that they form a composite film. At least portions of the deformed regions of the second film are etched so that sections of the second film are chemically dissolved.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 17, 2013
    Inventors: Joerg Hampl, Frank Weise, Gregor Schlingloff, Andreas Schober, Uta Fernekorn
  • Patent number: 7132081
    Abstract: Microwells, which are open on both sides and are arranged two-dimensionally in a microwell matrix (4), are hermetically closed by pressure on both sides using plugs (6) covered with a sealing sheet (11). A layer of elastic material (9), which is arranged between the plug (6) and the sealing sheet (11), guarantees uniform pressure on all the microwells of a microwell matrix (4) which is loosely held by a frame structure (1). Continuous peripheral elevations (2), which protrude in both directions at right angles to the plane of the microwell matrix (4), ensure that the deformable thin layer of elastic material (9) does not escape sideways between the plug (6) and the microwell matrix (4) during the pressing process. A plurality of microwell matrices (4) are held simultaneously by the frame structure (1) and are hermetically closed by a corresponding number of allocated plugs (6), which are fastened to a base plate (7) and a cover plate (8), respectively.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: November 7, 2006
    Assignee: Nanomics Technologies GmbH
    Inventors: Beate Diefenbach, Holger Deppe, Hanns Wurziger, Alexander Gross, Gregor Schlingloff, Andreas Schober, Dirk Tomandl
  • Publication number: 20040168728
    Abstract: The invention relates to a device for controlling the amount of liquid substances received and discharged. It is an object of the invention to produce a device, enabling a plurality of different liquid substances to be received and discharged from micro or nano titer plates. According to the invention, it is possible to carry out one or more chemical or biological reactions in said device and to receive liquid substances with differing viscosity, as a result of capillary channels which are arranged at an equal distance from each other and are provided in a row, said channels being brought together in a communicative link with a chamber which is can be impinged upon by overpressure and underpressure, whereby the capillary channels are embedded in the plate and one sieve-type membrane is associated with the ends of the capillary channels at least on the inner side of the pressure chamber. According to the invention, an area is provided above each end of the capillary channels for receiving a liquid substance.
    Type: Application
    Filed: July 10, 2003
    Publication date: September 2, 2004
    Inventors: Andreas Schober, Gregor Schlingloff, Jens Albert, Thomas Henkel, Gunter Mayer
  • Publication number: 20030235517
    Abstract: A device for carrying out the parallel incubation of solutions comprises a holding frame (1) inside of which one or more titer plates (2) can be placed. Each titer plate (2) is separately closed by a cover plate (4), which can be pressed thereon, resulting in the prevention of unwanted evaporation effects and transport phenomena. Seals (5) are placed between the cover plate (4) and the holding frame (1). Continuous recesses in the holding frame (1) are located underneath the titer plates (2) and are occluded by a common one-piece bottom plate (7) having punch-like protrusions (6). Devices for regulating temperature can be arranged both inside the cover plate (4), the holding frame (1) as well as inside the one-piece bottom plate (7). The holding frame (1) comprises channel-like recesses for accommodating liquid solvent.
    Type: Application
    Filed: March 18, 2003
    Publication date: December 25, 2003
    Inventors: Holgar Deppe, Beate Diefenbach, Andreas Willems, Hanns Wurziger, Alexander Gross, Gregor Schlingloff, Andreas Schober, Dirk Tomadl
  • Publication number: 20030138360
    Abstract: Microwells, which are open on both sides and are arranged two-dimensionally in a microwell matrix (4), are hermetically closed by pressure on both sides using plugs (6) covered with a sealing sheet (11). A layer of elastic material (9), which is arranged between the plug (6) and the sealing sheet (11), guarantees uniform pressure on all the microwells of a microwell matrix (4) which is loosely held by a frame structure (1). Continuous peripheral elevations (2), which protrude in both directions at right angles to the plane of the microwell matrix (4), ensure that the deformable thin layer of elastic material (9) does not escape sideways between the plug (6) and the microwell matrix (4) during the pressing process. A plurality of microwell matrices (4) are held simultaneously by the frame structure (1) and are hermetically closed by a corresponding number of allocated plugs (6), which are fastened to a base plate (7) and a cover plate (8), respectively.
    Type: Application
    Filed: November 21, 2002
    Publication date: July 24, 2003
    Inventors: Beate Diefenbach, Holger Deppe, Hanns Wurziger, Alexander Gross, Gregor Schlingloff, Andreas Schober, Dirk Tomandl