Patents by Inventor Gregor Steiner
Gregor Steiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11828720Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.Type: GrantFiled: December 2, 2020Date of Patent: November 28, 2023Assignee: Dräger Safety AG & Co. KGaAInventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
-
Publication number: 20220412916Abstract: An electrochemical gas sensor (1) having a stacked assembly of at least one first electrode (3) and a second electrode (6), which are respectively arranged on a carrier membrane (2, 5), and a separator (4) arranged between the electrodes (3, 6), including a gas conduction path (14) between the first electrode (3) and the second electrode (6). The gas conduction path (14) is constituted within the structural space defined by the electrodes (3, 6).Type: ApplicationFiled: June 22, 2022Publication date: December 29, 2022Applicant: Testo SE & Co. KGaAInventors: Reinhold MÜNCH, Gregor STEINER, Marc BITTNER, Alexander KIRMAIR
-
Patent number: 10969361Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.Type: GrantFiled: November 30, 2018Date of Patent: April 6, 2021Assignee: Dräger Safety AG & Co. KGaAInventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Frank Mett, Rigobert Chrzan, Sabrina Pilz
-
Publication number: 20210088470Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.Type: ApplicationFiled: December 2, 2020Publication date: March 25, 2021Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Rigobert CHRZAN, Sabrina SOMMER, Frank METT, Andreas HENGSTENBERG
-
Patent number: 10883958Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.Type: GrantFiled: September 1, 2014Date of Patent: January 5, 2021Assignee: Dräger Safety AG & Co. KGaAInventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
-
Publication number: 20190101506Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.Type: ApplicationFiled: November 30, 2018Publication date: April 4, 2019Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Frank METT, Rigobert CHRZAN, Sabrina SOMMER
-
Patent number: 10175191Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.Type: GrantFiled: September 1, 2014Date of Patent: January 8, 2019Assignee: Dräger Safety AG & Co. KGaAInventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Frank Mett, Rigobert Chrzan, Sabrina Sommer
-
Publication number: 20160116430Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.Type: ApplicationFiled: September 1, 2014Publication date: April 28, 2016Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Rigobert CHRZAN, Sabrina SOMMER, Frank METT, Andreas HENGSTENBERG
-
Publication number: 20160103092Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.Type: ApplicationFiled: September 1, 2014Publication date: April 14, 2016Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Frank METT, Rigobert CHRZAN, Sabrina SOMMER
-
Patent number: 8163165Abstract: The present invention relates to electrochemical sensors for determining gaseous analytes in an aqueous measuring medium, to a process for producing such sensors, and to a process for determining gaseous analytes dissolved in an aqueous measuring medium using the electrochemical sensors. The electrolyte layer of the sensors comprises at least one particulate material and at least one binder which together form a porous, non-swellable framework structure, wherein the pores in this framework structure are configured to absorb a liquid electrolyte or contain the liquid electrolyte.Type: GrantFiled: July 16, 2010Date of Patent: April 24, 2012Assignee: Roche Diagnostics Operations, Inc.Inventors: Helmut Offenbacher, Gregor Steiner, Claudia-Gemma Muresanu
-
Publication number: 20110079523Abstract: The present invention relates to electrochemical sensors for determining gaseous analytes in an aqueous measuring medium, to a process for producing such sensors, and to a process for determining gaseous analytes dissolved in an aqueous measuring medium using the electrochemical sensors. The electrolyte layer of the sensors comprises at least one particulate material and at least one binder which together form a porous, non-swellable framework structure, wherein the pores in this framework structure are configured to absorb a liquid electrolyte or contain the liquid electrolyte.Type: ApplicationFiled: July 16, 2010Publication date: April 7, 2011Applicant: ROCHE DIAGNOSTICS OPERATIONS, INC.Inventors: Helmut Offenbacher, Gregor Steiner, Claudia-Gemma Muresanu
-
Patent number: 6613205Abstract: An electrochemical sensor includes an electrochemically active sensor layer (sensor spot), which is applied by means of thick film techniques in at least one region of an electrically insulating, planar substrate, the surface of the sensor layer being brought into contact in a measuring area with the aqueous sample to be determined. At least one conductive path for signal pick-up is also applied on the substrate by means of thick film techniques. The sensor layer contains at least one oxide of metal from subgroups 7 and 8 wof the Periodic Table as sensor component. The contact between the electrochemically active sensor layer and the conductor is effected via an electrically conductive bridge layer which extends from the measuring area in a direction essentially parallel to the surface of the substrate. The bridge layer consists of corrosion-resistant material.Type: GrantFiled: March 3, 2000Date of Patent: September 2, 2003Assignee: F. Hoffmann-La Roche AGInventors: Gregor Steiner, Bernhard Schaffar, Marie-Luise Schinnerl, Christoph Ritter