Patents by Inventor Gregor Steiner

Gregor Steiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828720
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: November 28, 2023
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
  • Publication number: 20220412916
    Abstract: An electrochemical gas sensor (1) having a stacked assembly of at least one first electrode (3) and a second electrode (6), which are respectively arranged on a carrier membrane (2, 5), and a separator (4) arranged between the electrodes (3, 6), including a gas conduction path (14) between the first electrode (3) and the second electrode (6). The gas conduction path (14) is constituted within the structural space defined by the electrodes (3, 6).
    Type: Application
    Filed: June 22, 2022
    Publication date: December 29, 2022
    Applicant: Testo SE & Co. KGaA
    Inventors: Reinhold MÜNCH, Gregor STEINER, Marc BITTNER, Alexander KIRMAIR
  • Patent number: 10969361
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 6, 2021
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Frank Mett, Rigobert Chrzan, Sabrina Pilz
  • Publication number: 20210088470
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Application
    Filed: December 2, 2020
    Publication date: March 25, 2021
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Rigobert CHRZAN, Sabrina SOMMER, Frank METT, Andreas HENGSTENBERG
  • Patent number: 10883958
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: January 5, 2021
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
  • Publication number: 20190101506
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Frank METT, Rigobert CHRZAN, Sabrina SOMMER
  • Patent number: 10175191
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: January 8, 2019
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Frank Mett, Rigobert Chrzan, Sabrina Sommer
  • Publication number: 20160116430
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Application
    Filed: September 1, 2014
    Publication date: April 28, 2016
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Rigobert CHRZAN, Sabrina SOMMER, Frank METT, Andreas HENGSTENBERG
  • Publication number: 20160103092
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Application
    Filed: September 1, 2014
    Publication date: April 14, 2016
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Frank METT, Rigobert CHRZAN, Sabrina SOMMER
  • Patent number: 8163165
    Abstract: The present invention relates to electrochemical sensors for determining gaseous analytes in an aqueous measuring medium, to a process for producing such sensors, and to a process for determining gaseous analytes dissolved in an aqueous measuring medium using the electrochemical sensors. The electrolyte layer of the sensors comprises at least one particulate material and at least one binder which together form a porous, non-swellable framework structure, wherein the pores in this framework structure are configured to absorb a liquid electrolyte or contain the liquid electrolyte.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 24, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Helmut Offenbacher, Gregor Steiner, Claudia-Gemma Muresanu
  • Publication number: 20110079523
    Abstract: The present invention relates to electrochemical sensors for determining gaseous analytes in an aqueous measuring medium, to a process for producing such sensors, and to a process for determining gaseous analytes dissolved in an aqueous measuring medium using the electrochemical sensors. The electrolyte layer of the sensors comprises at least one particulate material and at least one binder which together form a porous, non-swellable framework structure, wherein the pores in this framework structure are configured to absorb a liquid electrolyte or contain the liquid electrolyte.
    Type: Application
    Filed: July 16, 2010
    Publication date: April 7, 2011
    Applicant: ROCHE DIAGNOSTICS OPERATIONS, INC.
    Inventors: Helmut Offenbacher, Gregor Steiner, Claudia-Gemma Muresanu
  • Patent number: 6613205
    Abstract: An electrochemical sensor includes an electrochemically active sensor layer (sensor spot), which is applied by means of thick film techniques in at least one region of an electrically insulating, planar substrate, the surface of the sensor layer being brought into contact in a measuring area with the aqueous sample to be determined. At least one conductive path for signal pick-up is also applied on the substrate by means of thick film techniques. The sensor layer contains at least one oxide of metal from subgroups 7 and 8 wof the Periodic Table as sensor component. The contact between the electrochemically active sensor layer and the conductor is effected via an electrically conductive bridge layer which extends from the measuring area in a direction essentially parallel to the surface of the substrate. The bridge layer consists of corrosion-resistant material.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: September 2, 2003
    Assignee: F. Hoffmann-La Roche AG
    Inventors: Gregor Steiner, Bernhard Schaffar, Marie-Luise Schinnerl, Christoph Ritter