Patents by Inventor Gregory A. Funk

Gregory A. Funk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150315099
    Abstract: A process for controlling a yield of an isomerization zone. Prior to entering the isomerization zone, C6 cyclic hydrocarbons are removed from a feed stream. Disproportionation reaction selectivity is observed which produces valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The disproportionation reactions and the ring opening reactions may be selectively controlled by adjusting an amount of C6 cyclic hydrocarbons passed into the isomerization zone.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann, Gregory Funk, David James Shecterle, Lakshmi P. Mokka
  • Publication number: 20150315101
    Abstract: A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream having iC4 hydrocarbons, iC5 hydrocarbons, and iC6 hydrocarbons prior to the stream being passed into the same isomerization zone. Suppression of the iC4 hydrocarbons does not occur, allowing the iC4 hydrocarbons to be isomerized in the same isomerization zone as the iC5 hydrocarbons and iC6 hydrocarbons.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann, Gregory Funk
  • Publication number: 20150045602
    Abstract: A process for increasing disproportionation and ring opening reactions an isomerization zone which converts iso-paraffins to normal paraffins. In order to promote these reactions, the amount of C6 cyclic hydrocarbons entering the isomerization zone is reduced. Disproportionation reaction selectivity is observed which produces valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. Conversion of iC4 hydrocarbons, iC5 hydrocarbons, and iC6 hydrocarbons may occur in the same isomerization zone.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 12, 2015
    Inventors: Mark P. Lapinski, Gregory Funk
  • Publication number: 20150045597
    Abstract: A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream.
    Type: Application
    Filed: April 24, 2014
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Steven T. Arakawa
  • Publication number: 20150045598
    Abstract: A process for increasing the yields of light olefins or shifting to increase the hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream, and to convert components from the reforming stream to the cracking stream.
    Type: Application
    Filed: April 24, 2014
    Publication date: February 12, 2015
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Steven T. Arakawa, Matthew Lippmann, Mary Jo Wier
  • Publication number: 20140357913
    Abstract: A process for increasing the yields of light olefins and the yields of aromatics from a hydrocarbon stream is presented. The process includes a first separation to direct the light components that are not reformable to a cracking unit, with the remainder passed to a second separation unit. The second separation unit extracts normal components from the hydrocarbon stream to pass to the cracking unit. The resulting hydrocarbon stream with reduced light ends and reduced normals is passed to a reforming unit.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 4, 2014
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Mary Jo Wier
  • Publication number: 20140357914
    Abstract: A process for increasing the yields of light olefins and the yields of aromatics from a hydrocarbon stream is presented. The process includes a first separation to direct the light components that are not reformable to a cracking unit, with the remainder passed to a second separation unit. The second separation unit extracts normal components from the hydrocarbon stream to pass to the cracking unit. The resulting hydrocarbon stream with reduced light ends and reduced normals is passed to a reforming unit.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 4, 2014
    Applicant: UOP LLC
    Inventors: Gregory A. Funk, Mary Jo Wier
  • Patent number: 6069289
    Abstract: A process to separate multimethyl-branched alkanes from a mixture of multimethyl-branched alkanes, monomethyl-branched alkanes, and normal alkanes has been developed. The mixture is introduced to a simulated moving bed of solid adsorbent particles having the selectivity normal alkanes>monomethyl-branched alkanes>multimethyl-branched alkanes. The adsorbent may be silicalite, ferrierite, zeolite Beta, MAPO-31, SAPO-31, SAPO-11, zeolite X ion exchanged with alkaline cations, alkaline earth cations, or a mixture thereof, and zeolite Y ion exchanged with alkaline cations, alkaline earth cations, or a mixture thereof. A raffinate stream enriched in multimethyl-branched alkanes is removed from the simulated moving bed.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: May 30, 2000
    Assignee: UOP LLC
    Inventors: Hemant W. Dandekar, Gregory A. Funk, Herman A. Zinnen
  • Patent number: 6036845
    Abstract: A catalytic reforming process comprises a prereactor which provides an intermediate stream to a riser reactor with multiple catalyst injection points to obtain high aromatics yields from a naphtha feedstock. Product from the riser reactor typically is discharged into a fluidized-bed reforming reactor, in which the reforming reaction is completed and catalyst is separated from hydrogen and hydrocarbons. Hydrocarbons from the reactor are separated to recover an aromatized product. Catalyst is regenerated to remove coke and reduced for reuse in the reforming process.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: March 14, 2000
    Assignee: UOP LLC
    Inventors: Gregory A. Funk, Christopher D. Gosling, Paula L. Bogdan
  • Patent number: 6026119
    Abstract: A computing device (100) including a wireless packet data communications modem (101) used in conjunction with a computer (103) to provide untethered access to data bases and other computer users. A method is provided for controlling data transmission and reception using the wireless packet data communications modem (101) in tandem with the computer (103). Two-way communications is achieved using a small, low-cost, light-weight wireless packet data communications modem contained in a housing, integral to a computing device, or a removable housing conforming to a PCMCIA industry standard.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: February 15, 2000
    Assignee: Motorola, Inc.
    Inventors: Gregory Funk, Ronald J. Vanderhelm, David W. Russo, Denis Beaudoin
  • Patent number: 5811630
    Abstract: A process is disclosed for the production of a high octane product from a feed mixture comprising C.sub.5 -C.sub.6 normal paraffins in which an equilibrium reaction to produce mono and dimethyl branched paraffins is achieved by conducting the reaction and the product separation in a pressure swing adsorption and reaction zone containing a uniformly distributed adsorbent for the selective adsorption of normal paraffins and a catalyst for the equilibrium conversion of normal paraffins to mono and dimethyl branched paraffins. More specifically, the process achieves the isomerization of the normal paraffins by the reaction of the normal paraffins in the presence of hydrogen with the simultaneous removal of the mono and dimethyl branched paraffin product at the same temperature and pressure. In one embodiment, the passing of the feed mixture to the bed is terminated and the bed is purged with one of the reactants which in turn further reacts to displace heavier paraffin and enhance the overall product octane.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: September 22, 1998
    Assignee: UOP LLC
    Inventors: Hemant W. Dandekar, Gregory A. Funk
  • Patent number: 5809067
    Abstract: A computing device (100) including a wireless packet data communications modem (101) used in conjunction with a computer (103) to provide untethered access to data bases and other computer users. A method is provided for controlling data transmission and reception using the wireless packet data communications modem (101) in tandem with the computer (103). Two-way communications is achieved using a small, low-cost, light-weight wireless packet data communications modem contained in a housing, integral to a computing device, or a removable housing conforming to a PCMCIA industry standard.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: September 15, 1998
    Assignee: Motorola, Inc.
    Inventors: Gregory Funk, Ronald J. Vanderhelm
  • Patent number: 5763730
    Abstract: A process for the continuous isomerization of an alkane to produce an isomerized product through contacting the alkane with a simulated moving bed acting as a catalyst for isomerization and an adsorbent for the alkanes has been developed. The alkane may be n-butane and the isomerized product 2-methylpropane, the alkane may be n-pentane and the isomerized product 2-methylbutane or 2,2-dimethylpropane, the alkane may have from 6 up to about 8 carbon atoms with no more than one methyl branch and the isomerized product having the same number of carbon atoms and at least two methyl branches, or the reactant may be a mixture of the foregoing alkanes with the corresponding isomerized products being formed. In a zone of the simulated moving bed, the alkanes are catalytically isomerized to form the isomerized products. The unreacted alkanes are adsorbed, and the isomerized products are collected.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: June 9, 1998
    Assignee: UOP
    Inventors: Hemant W. Dandekar, Gregory A. Funk, Ralph D. Gillespie, Herman A. Zinnen, Charles P. McGonegal, Masami Kojima, Simon H. Hobbs
  • Patent number: 5744645
    Abstract: A process for the efficient production of diisopropyl ether where catalytic distillation is used to increase the yield of product beyond thermodynamic equilibrium limitations has been developed. In a hydration zone the propylene in a feedstock is reacted with water in the presence of a catalyst to effect hydration to produce an effluent stream containing at least water, unreacted propylene, and isopropyl alcohol, and then, in an etherification zone, at least a portion of the effluent stream is further reacted by catalytic distillation in the presence of a catalyst to effect reaction of propylene and isopropyl alcohol to form diisopropyl ether while concurrently separating an organic portion containing the diisopropyl ether and an aqueous portion, and collecting the organic portion containing the diisopropyl ether.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Terry L. Marker, Gregory A. Funk, Paul T. Barger, Harold U. Hammershaimb
  • Patent number: 5744683
    Abstract: A process for the continuous isomerization of an alkane to produce an isomerized product through contacting the alkane with a simulated moving bed acting as a catalyst for isomerization and an adsorbent for the alkanes has been developed. The alkane may be n-butane and the isomerized product 2-methylpropane, the alkane may be n-pentane and the isomerized product 2-methylbutane or 2,2-dimethylpropane, the alkane may have from 6 up to about 8 carbon atoms with no more than one methyl branch and the isomerized product having the same number of carbon atoms and at least two methyl branches, or the reactant may be a mixture of the foregoing alkanes with the corresponding isomerized products being formed. In a zone of the simulated moving bed, the alkanes are catalytically isomerized to form the isomerized products. The unreacted alkanes are adsorbed, and the isomerized products are collected.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Hemant W. Dandekar, Gregory A. Funk, Simon H. Hobbs, Masami Kojima, Ralph D. Gillespie, Herman A. Zinnen, Charles P. McGonegal
  • Patent number: 5744684
    Abstract: A process for isomerizing a mixture of alkanes containing pentanes and at least one alkane having from 6 to about 8 carbon atoms and no more than one methyl branch has been developed.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Herman A. Zinnen, Charles P. McGonegal, Hemant W. Dandekar, Gregory A. Funk, Ralph D. Gillespie
  • Patent number: 5675048
    Abstract: Hydrocarbons are alkylated in a fluidized riser-reactor using a solid catalyst which is regenerated within the process by contact with hydrogen. The alkylation and regeneration steps are separated to prevent the admixture of hydrogen and any olefins present in the process. Two separate modes of regeneration are performed simultaneously on different portions of the catalyst: a partial liquid-phase hydrogenative regeneration at reaction conditions and a high temperature (complete) liquid-phase hydrogenative regeneration.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: October 7, 1997
    Assignee: UOP
    Inventors: Scott Yu-Feng Zhang, Christopher David Gosling, Paul Alvin Sechrist, Gregory A. Funk
  • Patent number: 5672798
    Abstract: Hydrocarbons are alkylated in a fluidized riser-reactor using a solid catalyst which is regenerated within the process by contact with hydrogen. The alkylation and regeneration steps are separated to prevent the admixture of hydrogen and any olefins present in the process. Two separate modes of regeneration are performed simultaneously: a mild liquid-phase washing and a vapor-phase hot hydrogen stripping operation.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: September 30, 1997
    Assignee: UOP
    Inventors: Scott Yu-Feng Zhang, Christopher David Gosling, Paul Alvin Sechrist, Gregory A. Funk
  • Patent number: 5618972
    Abstract: A two-stage process for effecting a chemical reaction has been developed. The reactants are contacted with a first stage fixed catalyst bed containing a solid catalyst or mixture of catalysts effective to catalyze the reaction and form a mixture of reactants and products. This reaction mixture and a desorbent are then contacted with a second stage simulated moving bed containing a solid or a mixture of solids effective to catalyze the reaction and to selectively adsorb at least one component from the reaction mixture. At least one product-containing stream is formed and collected. The process may be conducted in the liquid phase or in the vapor phase.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: April 8, 1997
    Assignee: UOP
    Inventors: Gregory A. Funk, Hemant W. Dandekar, Simon H. Hobbs
  • Patent number: 5530172
    Abstract: A process for the continuous isomerization of an alkane to produce an isomerized product through contacting the alkane with a simulated moving bed acting as a catalyst for isomerization and an adsorbent for the alkanes has been developed. The alkane may be n-butane and the isomerized product 2-methylpropane, the alkane may be n-pentane and the isomerized product 2-methylbutane or 2,2-dimethylpropane, the alkane may have from 6 up to about 8 carbon atoms with no more than one methyl branch and the isomerized product having the same number of carbon atoms and at least two methyl branches, or the reactant may be a mixture of the foregoing alkanes with the corresponding isomerized products being formed. In a zone of the simulated moving bed, the alkanes are catalytically isomerized to form the isomerized products. The unreacted alkanes are adsorbed, and the isomerized products are collected.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: June 25, 1996
    Assignee: UOP
    Inventors: Gregory A. Funk, Hermant W. Dandekar, Masami Kojima, Simon H. Hobbs