Patents by Inventor Gregory A. Kirkos

Gregory A. Kirkos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170215478
    Abstract: There is provided an electronically controlled, breath actuated vaporization device for generating vaporized material for inhalation by a user. The vaporization device includes a vaporization chamber for accommodating material to be vaporized and a mesh heater or other heater supported upstream of the vaporization chamber which is operable to heat air that passes through the mesh heater or other heater during an inhalation event. A closed loop control scheme may be employed to control heat generated by the heater to maintain a temperature of the air delivered to the vaporization chamber at or within a predetermined tolerance of a desired vaporization temperature for at least a majority of a duration of the inhalation event.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 3, 2017
    Inventors: Christopher B. Harrison, Steven A. Rodriguez, Gregory A. Kirkos, Alga Lloyd Nothern, III, Dainia Edwards, Joseph N. Kennelly Ullman, Eric W. Healy
  • Publication number: 20160067919
    Abstract: A truss-formation apparatus comprising two truss makers and a lateral stage, wherein the truss makers create trusses and each truss maker comprises thermal dies, heaters with temperature sensors, and mandrels; wherein the truss makers form trusses that comprise parallel truss elements and battens; wherein a pultrusion actuator pulls parallel truss elements down along a mandrel; wherein a batten actuator causes a thermal die to rotate around a mandrel forming battens that connect parallel truss elements to one another; and wherein the lateral stage comprises a thermal die and traverses the gap between the parallel trusses forming cross members that connect the trusses.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 10, 2016
    Inventors: ROBERT HOYT, Gregory Kirkos, Jeffrey Slostad, Gregory Jimmerson, Todd Moser, Mark Jaster, Nicholas Barsalou
  • Patent number: 8035876
    Abstract: Presented herein are systems, methods and devices relating to miniature actuatable platform systems. According to one embodiment, the systems, methods, and devices relate to controllably actuated miniature platform assemblies including a miniature mirror.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: October 11, 2011
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan J. Bernstein, Fran J. Rogomentich, Tommy W. Lee, Mathew Varghese, Gregory A. Kirkos
  • Publication number: 20100067085
    Abstract: Presented herein are systems, methods and devices relating to miniature actuatable platform systems. According to one embodiment, the systems, methods, and devices relate to controllably actuated miniature platform assemblies including a miniature mirror.
    Type: Application
    Filed: November 20, 2009
    Publication date: March 18, 2010
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan Bernstein, Fran J. Rogomentich, Tommy Lee, Matthew Varghese, Gregory A. Kirkos
  • Patent number: 7643196
    Abstract: Presented herein are systems, methods and devices relating to miniature actuatable platform systems. According to one embodiment, the systems, methods, and devices relate to controllably actuated miniature platform assemblies including a miniature mirror.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: January 5, 2010
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan Bernstein, Fran J. Rogomentich, Tommy Lee, Mathew Varghese, Gregory A. Kirkos
  • Patent number: 7426861
    Abstract: A tuning fork gyroscope design where at least one proof mass is supported above a substrate. At least one drive electrode is also supported above the substrate adjacent the proof mass. Typically, the proof mass and the drive electrode include interleaved electrode fingers. A sense plate or shield electrode on the substrate beneath the proof mass extends completely under the extent of the electrode fingers of proof mass.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: September 23, 2008
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Marc S. Weinberg, Jonathan Bernstein, Jeffrey T. Borenstein, Richard Elliott, Gregory Kirkos, Anthony S. Kourepenis
  • Publication number: 20070139752
    Abstract: Presented herein are systems, methods and devices relating to miniature actuatable platform systems. According to one embodiment, the systems, methods, and devices relate to controllably actuated miniature platform assemblies including a miniature mirror.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 21, 2007
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan Bernstein, Fran J. Rogomentich, Tommy Lee, Mathew Varghese, Gregory A. Kirkos
  • Publication number: 20060283246
    Abstract: A tuning fork gyroscope design where at least one proof mass is supported above a substrate. At least one drive electrode is also supported above the substrate adjacent the proof mass. Typically, the proof mass and the drive electrode include interleaved electrode fingers. A sense plate or shield electrode on the substrate beneath the proof mass extends completely under the extent of the electrode fingers of proof mass.
    Type: Application
    Filed: June 15, 2005
    Publication date: December 21, 2006
    Inventors: Marc Weinberg, Jonathan Bernstein, Jeffrey Borenstein, Richard Elliott, Gregory Kirkos, Anthony Kourepenis
  • Patent number: 6989921
    Abstract: An array of magnetically actuated MEMS mirror devices is provided having stationary magnets configured to provide strong magnetic fields in the plane of the mirrors without any magnets or magnet-system components in the plane of the mirrors. Also, a magnetically actuated mirror device is provided that includes an improved actuation coil configuration that provides greater torque during mirror actuation. In addition, a mechanism is provided to detect the angular deflection of a moveable mirror. Also, an improved process is provided for manufacturing MEMS mirror devices.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: January 24, 2006
    Assignee: Corning Incorporated
    Inventors: Jonathan Bernstein, William P. Taylor, Gregory A. Kirkos, Marc Waelti
  • Patent number: 6912078
    Abstract: One embodiment is directed to a gimbal mechanism for a MEMS mirror device having folded flexure hinges. Another embodiment is directed to a gimbal mechanism having a frame with through-holes or recesses distributed thereabout to reduce weight of said frame. Other embodiments are directed to improved electrode structures for electrostatically actuated MEMS devices. Other embodiments are directed to methods for fabricating electrodes for electrostatically actuated MEMS devices. Other embodiments are directed to methods of fabricating through-wafer interconnect devices. Other embodiments are directed to MEMS mirror array packaging. Other embodiments are directed to electrostatically actuated MEMS devices having driver circuits integrated therewith. Other embodiments are directed to methods of patterning wafers with a plurality of through-holes. Other embodiments are directed to methods of forming moveable structures in MEMS devices.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 28, 2005
    Assignee: Corning Incorporated
    Inventors: Thomas David Kudrle, Carlos Horacio Mastrangelo, Marc Waelti, ChuanChe Wang, Gordon M. Shedd, Gregory A. Kirkos, Mirela Gabriela Bancu, James Ching-Ming Hsiao
  • Patent number: 6576880
    Abstract: A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 10, 2003
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Richard T. Martorana, Jamie Anderson, Simon Mark Spearing, Seth Kessler, Brent Appleby, Edward Bergmann, Sean George, Steven Jacobson, Donald Fyler, Mark Drela, Gregory Kirkos, William McFarland, Jr.
  • Publication number: 20030089820
    Abstract: A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state.
    Type: Application
    Filed: May 17, 2002
    Publication date: May 15, 2003
    Inventors: Richard T. Martorana, Jamie Anderson, Simon Mark Spearing, Seth Kessler, Brent Appleby, Edward Bergmann, Sean George, Steven Jacobson, Donald Fyler, Mark Drela, Gregory Kirkos, William McFarland
  • Publication number: 20020146200
    Abstract: One embodiment is directed to a gimbal mechanism for a MEMS mirror device having folded flexure hinges. Another embodiment is directed to a gimbal mechanism having a frame with through-holes or recesses distributed thereabout to reduce weight of said frame. Other embodiments are directed to improved electrode structures for electrostatically actuated MEMS devices. Other embodiments are directed to methods for fabricating electrodes for electrostatically actuated MEMS devices. Other embodiments are directed to methods of fabricating through-wafer interconnect devices. Other embodiments are directed to MEMS mirror array packaging. Other embodiments are directed to electrostatically actuated MEMS devices having driver circuits integrated therewith. Other embodiments are directed to methods of patterning wafers with a plurality of through-holes. Other embodiments are directed to methods of forming moveable structures in MEMS devices.
    Type: Application
    Filed: March 15, 2002
    Publication date: October 10, 2002
    Inventors: Thomas David Kudrle, Carlos Horacio Mastrangelo, Marc Waelti, ChuanChe Wang, Gordon M. Shedd, Gregory A. Kirkos, Mirela Gabriela Bancu, James Ching-Ming Hsiao
  • Patent number: 6392213
    Abstract: A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 21, 2002
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Richard T. Martorana, Jamie Anderson, Simon Mark Spearing, Seth Kessler, Brent Appleby, Edward Bergmann, Sean George, Steven Jacobson, Donald Fyler, Mark Drela, Gregory Kirkos, William McFarland, Jr.
  • Publication number: 20020050744
    Abstract: An array of magnetically actuated MEMS mirror devices is provided having stationary magnets configured to provide strong magnetic fields in the plane of the mirrors without any magnets or magnet-system components in the plane of the mirrors. Also, a magnetically actuated mirror device is provided that includes an improved actuation coil configuration that provides greater torque during mirror actuation. In addition, a mechanism is provided to detect the angular deflection of a moveable mirror. Also, an improved process is provided for manufacturing MEMS mirror devices.
    Type: Application
    Filed: August 24, 2001
    Publication date: May 2, 2002
    Inventors: Jonathan Bernstein, William P. Taylor, Gregory A. Kirkos, Marc Waelti
  • Patent number: 6257059
    Abstract: A micromechanical tuning fork gyroscope has an input axis out of the plane of the structure. In one embodiment, capacitor plates are provided in parallel strips beneath two apertured, planar proof masses suspended from a substrate by a support structure. The proof masses are paired and set in opposed vibrational motion by an electrostatic comb drive. In response to an input angular rate about the out-of-plane input axis, the proof masses translate with respect to the striped capacitors, thereby varying the capacitance between the capacitor strips and the proof masses as a function of the input rate. In another embodiment, proof mass combs of a comb drive are meshed between fixed drive combs which are electrically excited in pairs 180° out of phase.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: July 10, 2001
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Marc S. Weinberg, Jonathan J. Bernstein, Gregory A. Kirkos, Tommy W. Lee, Anthony Petrovich
  • Patent number: 6232546
    Abstract: A microcavity apparatus and systems for maintaining microcavity spacing over a macroscopic area. An application of this invention is a microscale generator. This microscale generator includes a first element for receiving energy; a second element, opposite the first element for transferring energy; at least one panel on either of the first element or the second element, the panel facing the other element; a device for controlling the distance between the at least one panel and the facing element to form a predetermined, sub-micron gap between the panel and the facing element for increasing energy transfer to the element for receiving; and a device, responsive to the energy transfer, for generating electricity.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: May 15, 2001
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Robert Stephen DiMatteo, Marc Steven Weinberg, Gregory A. Kirkos