Patents by Inventor Gregory A. Olsen

Gregory A. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190274627
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 12, 2019
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Publication number: 20190265674
    Abstract: A system and methods to identify which signals are significant to an assessment of a complex machine system state in the presence of non-linearities and disjoint groupings of condition types. The system enables sub-grouping of signals corresponding to system sub-components or regions. Explanations of signal significance are derived to assist in causal analysis and operational feedback to the system is prescribed and implemented for the given condition and causality.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Gregory Olsen, Dan Kearns, Peter Nicholas Pritchard, Nikunj Mehta
  • Publication number: 20190223804
    Abstract: Systems and methods are disclosed for proximity sensing in physiological sensors, and more specifically to using one or more proximity sensors located on or within a physiological sensor to determine the positioning of the physiological sensor on a patient measurement site. Accurate placement of a physiological sensor on the patient measurement site is a key factor in obtaining reliable measurement of physiological parameters of the patient. Proper alignment between a measurement site and a sensor optical assembly provides more accurate physiological measurement data. This alignment can be determined based on data from a proximity sensor or sensors placed on or within the physiological sensor.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 25, 2019
    Inventors: Thomas B. Blank, Gregory A. Olsen, Cristiano Dalvi, Hung T. Vo
  • Publication number: 20190216319
    Abstract: The present disclosure provides an electronic device that includes at least one sensor indicative of a physiological condition of a user, the at least one sensor worn by a patient. The electronic device can further include a location determination module configured to determine a location of a patient. The electronic device can receive a measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can contact emergency services and access and contact one or more of a contact in an electronic address book associated with the processing system. The electronic device can provide a location of the user based on information determined by the location determination module.
    Type: Application
    Filed: December 13, 2018
    Publication date: July 18, 2019
    Inventors: Jeroen Poeze, Gregory A. Olsen, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 10342487
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: July 9, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Publication number: 20190142283
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Patent number: 10231670
    Abstract: Systems and methods are disclosed for proximity sensing in physiological sensors, and more specifically to using one or more proximity sensors located on or within a physiological sensor to determine the positioning of the physiological sensor on a patient measurement site. Accurate placement of a physiological sensor on the patient measurement site is a key factor in obtaining reliable measurement of physiological parameters of the patient. Proper alignment between a measurement site and a sensor optical assembly provides more accurate physiological measurement data. This alignment can be determined based on data from a proximity sensor or sensors placed on or within the physiological sensor.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: March 19, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Thomas B. Blank, Gregory A. Olsen, Cristiano Dalvi, Hung T. Vo
  • Patent number: 10159412
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: December 25, 2018
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Publication number: 20180192955
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 12, 2018
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Patent number: 9895107
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: February 20, 2018
    Assignee: MASIMO CORPORATION
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Patent number: 9750442
    Abstract: A physiological status monitor has a monitor and an interconnected sensor that generates a sensor signal. The monitor computes physiological parameters responsive to the sensor signal and displays physiological parameters accordingly. In an embodiment, the monitor displays physiological parameter information across multiple patients in a cumulative pie chart format so that a caregiver can quickly discern and readily identify patients in need of immediate medical attention.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: September 5, 2017
    Assignee: Masimo Corporation
    Inventor: Gregory A. Olsen
  • Publication number: 20170143281
    Abstract: A patient monitoring system can display one or more configurable health monitors on a configurable user interface. The health indicators are configured to display a physiological signal from a patient. The patient monitoring system can calculate ranges of values for the health indicator that correspond to a status of the patient. The health indicators can display different outputs based on the value of the physiological signal.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 25, 2017
    Inventor: Gregory A. Olsen
  • Publication number: 20160324488
    Abstract: A sensor system for obtaining and displaying information relating to physiological parameters, such as Total Hemoglobin and Pulse rate for use by a user such as an athlete. The system can present the measured physiological parameters to the user in a useful way. For example the system can display a visual multi quadrant infographic display, which can present the total hemoglobin values measured by the system in a particular season. The system can also display a visual elevation infographic display, which can present a comparison of the total hemoglobin values measured by the system over a period of time and/or at various altitudes. The system can also display a visual yin-yang infographic display, which can present a comparison of one or more metrics calculated by the system or one or more parameters measured by the system. The system can provide useful information about the user's health and/or well-being and allow the user to quickly and easily view and interpret relevant information.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 10, 2016
    Inventor: Gregory A. Olsen
  • Patent number: 9480435
    Abstract: A patient monitoring system can display one or more configurable health monitors on a configurable user interface. The health indicators are configured to display a physiological signal from a patient. The patient monitoring system can calculate ranges of values for the health indicator that correspond to a status of the patient. The health indicators can display different outputs based on the value of the physiological signal.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: November 1, 2016
    Assignee: MASIMO CORPORATION
    Inventor: Gregory A. Olsen
  • Patent number: 9474474
    Abstract: In an embodiment, a patient monitor, such as a pulse oximeter, functions as a spot check glucometer when in communication with a blood glucose strip reader. In an embodiment, communications between the patient monitor and the strip reader may optionally be encrypted. Embodiments also include the strip reader housed in a dongle configured to mate with a sensor port of the pulse oximeter.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: October 25, 2016
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo M. Lamego, Jeroen Poeze, Cristiano Dalvi, Hung Vo, Ferdyan Lesmana, Gregory A. Olsen, Sean Merritt, Ashish Patel
  • Patent number: 9218454
    Abstract: Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician are disclosed. The medical patient monitoring devices may be configured to perform a selected action when the presence of a clinician is detected. Systems and methods for facilitating communication between medical devices that use different medical communication protocol formats are also disclosed. For example, a medical communication protocol translator can be configured to receive an input message formatted according to a first protocol format from a first medical device and to output an output message formatted according to a second protocol format supported by a second medical device using a set of translation rules. Medical monitoring reporting systems are also disclosed. The medical monitoring reporting systems may be used to analyze a stored collection of physiological parameter data to simulate the effect of changing various medical monitoring options.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: December 22, 2015
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Bilal Muhsin, Anand Sampath, Gregory A. Olsen
  • Patent number: 9153121
    Abstract: An alarm suspend system utilizes an alarm trigger responsive to physiological parameters and corresponding limits on those parameters. The parameters are associated with both fast and slow treatment times corresponding to length of time it takes for a person to respond to medical treatment for out-of-limit parameter measurements. Audible and visual alarms respond to the alarm trigger. An alarm silence button is pressed to silence the audible alarm for a predetermined suspend time. The audible alarm is activated after the suspend time has lapsed. Longer suspend times are associated with slow treatment parameters and shorter suspend times are associated with fast treatment parameters.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: October 6, 2015
    Assignee: MASIMO CORPORATION
    Inventors: Massi Joe E. Kiani, Steve L. Cebada, Gregory A. Olsen
  • Patent number: RE47244
    Abstract: An alarm suspend system utilizes an alarm trigger responsive to physiological parameters and corresponding limits on those parameters. The parameters are associated with both fast and slow treatment times corresponding to length of time it takes for a person to respond to medical treatment for out-of-limit parameter measurements. Audible and visual alarms respond to the alarm trigger. An alarm silence button is pressed to silence the audible alarm for a predetermined suspend time. The audible alarm is activated after the suspend time has lapsed. Longer suspend times are associated with slow treatment parameters and shorter suspend times are associated with fast treatment parameters.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: February 19, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Massi Joe E. Kiani, Steve L. Cebada, Gregory A. Olsen
  • Patent number: RE47249
    Abstract: An alarm suspend system utilizes an alarm trigger responsive to physiological parameters and corresponding limits on those parameters. The parameters are associated with both fast and slow treatment times corresponding to length of time it takes for a person to respond to medical treatment for out-of-limit parameter measurements. Audible and visual alarms respond to the alarm trigger. An alarm silence button is pressed to silence the audible alarm for a predetermined suspend time. The audible alarm is activated after the suspend time has lapsed. Longer suspend times are associated with slow treatment parameters and shorter suspend times are associated with fast treatment parameters.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: February 19, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Massi Joe E. Kiani, Steve L. Cebada, Gregory A. Olsen
  • Patent number: RE47353
    Abstract: An alarm suspend system utilizes an alarm trigger responsive to physiological parameters and corresponding limits on those parameters. The parameters are associated with both fast and slow treatment times corresponding to length of time it takes for a person to respond to medical treatment for out-of-limit parameter measurements. Audible and visual alarms respond to the alarm trigger. An alarm silence button is pressed to silence the audible alarm for a predetermined suspend time. The audible alarm is activated after the suspend time has lapsed. Longer suspend times are associated with slow treatment parameters and shorter suspend times are associated with fast treatment parameters.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: April 16, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Massi Joe E. Kiani, Steve L. Cebada, Gregory A. Olsen