Patents by Inventor Gregory A. Pinchasik

Gregory A. Pinchasik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8496699
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: July 30, 2013
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Patent number: 8317851
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 27, 2012
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20110022156
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Application
    Filed: October 5, 2010
    Publication date: January 27, 2011
    Applicant: MEDINOL LTD.
    Inventors: Jacob RICHTER, Gregory PINCHASIK
  • Patent number: 7828835
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 9, 2010
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Patent number: 7763064
    Abstract: Disclosed is a stent having struts with reverse direction curvature for providing a reduced compressed profile and an increased expanded profile. The strut configuration comprises a plurality of arcuate sections facing in opposite convex and a concave orientation. The strut width may be gradually decreased from its ends towards the strut's mid-section to redistribute maximal strains away from portions of the stent more susceptible to permanent deformation, such as the loop portions. Varying strut lengths to offset the maximum circumferential widths of adjacent portions of the stent may further reduce the compressed stent profile. The varied stent lengths may also contribute to an increased expanded stent profile. Stents with the reverse direction curvature strut design can obtain an expanded to compressed stent diameter ratio of about 7:1 compared to conventional stents that have a ratio of up to about 5:1. The curved strut can be utilized with any stent design.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: July 27, 2010
    Assignee: Medinol, Ltd.
    Inventor: Gregory Pinchasik
  • Patent number: 7722658
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 25, 2010
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20100100166
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: MEDINOL, LTD.
    Inventors: Jacob RICHTER, Gregory PINCHASIK
  • Patent number: 7621947
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: November 24, 2009
    Assignee: Medinol, Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Patent number: 7481816
    Abstract: An ophthalmic implant for treatment of glaucoma, a delivery device for implanting such an implant, and a method of implanting such an implant. The implant includes a tube having an inlet end, an outlet end, and a tube passage therebetween, and a flange connected to the tube at the outlet end of the tube. The tube at its inlet end may have a beveled surface facing away from the iris and one or more circumferential holes. The implant may be implanted by use of a delivery device comprising a handle and rodlike instrument,with a tip for insertion into the tube passage of the implant.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: January 27, 2009
    Assignee: Optonol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik, Ira Yaron
  • Publication number: 20080269873
    Abstract: A stent for implanting in the body to hold open a blood vessel includes cells with facing loops and the curved flexible links disposed and adapted to cooperate so that, when unexpanded, the stent can flex as it is moved through curved blood vessels to a site where it is to be expanded and so that, when the stent is expanded in a curved vessel, at that site, as compared to each other, cells on the outside of the curve are open in length, but narrow in width as compared to cells on the inside of the curve which are short in length but increased in width to result in a more constant stent cell area between the inside and the outside of the curve than would otherwise occur causing the stent, when coated with a medicine, to apply a more even dose to the inside wall of the lumen, avoiding the possibility that a toxic dose is supplied at one area while a less than effective dose is applied to another area.
    Type: Application
    Filed: July 15, 2008
    Publication date: October 30, 2008
    Inventors: Henry Marshall ISRAEL, Gregory Pinchasik
  • Patent number: 7371255
    Abstract: A stent for insertion into a blood vessel is made from a sheet having a longitudinal axis and a first portion and a second portion. The first portion has a proximal end and a distal end and a first lateral side and a second lateral side with the lateral sides of the first portion substantially parallel to the longitudinal axis and disposed apart from each other a first distance. The second portion has a proximal end and a distal end and a first lateral side and a second lateral side with the lateral sides of the second portion substantially parallel to the longitudinal axis and disposed apart from each other a second distance that is less than the first distance. The proximal end of the second portion communicates with the distal end of the first portion. The first lateral side of the first portion is connected to the second lateral side of the first portion and the first lateral side of the second portion is connected to the second lateral side of the second portion to form the stent.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: May 13, 2008
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20070299507
    Abstract: A stent for implanting in the body to hold open a blood vessel includes cells with facing loops and the curved flexible links disposed and adapted to cooperate so that, when unexpanded, the stent can flex as it is moved through curved blood vessels to a site where it is to be expanded and so that, when the stent is expanded in a curved vessel, at that site, as compared to each other, cells on the outside of the curve are open in length, but narrow in width as compared to cells on the inside of the curve which are short in length but increased in width to result in a more constant stent cell area between the inside and the outside of the curve than would otherwise occur causing the stent, when coated with a medicine, to apply a more even dose to the inside wall of the lumen, avoiding the possibility that a toxic dose is supplied at one area while a less than effective dose is applied to another area.
    Type: Application
    Filed: September 5, 2007
    Publication date: December 27, 2007
    Inventors: Henry Israel, Gregory Pinchasik
  • Patent number: 7141062
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: November 28, 2006
    Assignee: Medinol, Ltd.
    Inventors: Gregory Pinchasik, Jacob Richter
  • Publication number: 20060178724
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Application
    Filed: March 31, 2006
    Publication date: August 10, 2006
    Inventors: Gregory Pinchasik, Jacob Richter
  • Publication number: 20060168791
    Abstract: A stent for insertion into a blood vessel is made from a sheet having a longitudinal axis and a first portion and a second portion. The first portion has a proximal end and a distal end and a first lateral side and a second lateral side with the lateral sides of the first portion substantially parallel to the longitudinal axis and disposed apart from each other a first distance. The second portion has a proximal end and a distal end and a first lateral side and a second lateral side with the lateral sides of the second portion substantially parallel to the longitudinal axis and disposed apart from each other a second distance that is less than the first distance. The proximal end of the second portion communicates with the distal end of the first portion. The first lateral side of the first portion is connected to the second lateral side of the first portion and the first lateral side of the second portion is connected to the second lateral side of the second portion to form the stent.
    Type: Application
    Filed: January 24, 2006
    Publication date: August 3, 2006
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20060149359
    Abstract: A stent and a method of making it from a wire, which method includes winding the wire on a mandrel, heating to form a coiled spring, and reversing the winding direction of the coiled spring to form the reversed coiled spring stent. The stent so formed may be reheated over a special mandrel so as to partly relax the outer portion of some or all of the stent coils. The stent may be made up of two or more sections, with adjoining section wound in opposite senses. Such a stent may be deployed by winding the stent onto a catheter, immobilizing the two ends of the wire and one or more intermediate points, bringing the stent to the location where it is to be deployed, and releasing first the intermediate point or points and then the end points. The release of the wire may be accomplished by heating the thread immobilizing the wire so that the thread breaks and releases the wire.
    Type: Application
    Filed: February 24, 2006
    Publication date: July 6, 2006
    Inventors: Jacob Richter, Gregory Pinchasik
  • Patent number: 7033386
    Abstract: A stent and a method of making it from a wire, which method includes winding the wire on a mandrel, heating to form a coiled spring, and reversing the winding direction of the coiled spring to form the reversed coiled spring stent. The stent so formed may be reheated over a special mandrel so as to partly relax the outer portion of some or all of the stent coils. The stent may be made up of two or more sections, with adjoining section wound in opposite senses. Such a stent may be deployed by winding the stent onto a catheter, immobilizing the two ends of the wire and one or more intermediate points, bringing the stent to the location where it is to be deployed, and releasing first the intermediate point or points and then the end points. The release of the wire may be accomplished by heating the thread immobilizing the wire so that the thread breaks and releases the wire.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: April 25, 2006
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Patent number: 6989026
    Abstract: A stent for insertion into a blood vessel is made from a sheet having a longitudinal axis and a first portion and a second portion. The first portion has a proximal end and a distal end and a first lateral side and a second lateral side with the lateral sides of the first portion substantially parallel to the longitudinal axis and disposed apart from each other a first distance. The second portion has a proximal end and a distal end and a first lateral side and a second lateral side with the lateral sides of the second portion substantially parallel to the longitudinal axis and disposed apart from each other a second distance that is less than the first distance. The proximal end of the second portion communicates with the distal end of the first portion. The first lateral side of the first portion is connected to the second lateral side of the first portion and the first lateral side of the second portion is connected to the second lateral side of the second portion to form the stent.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: January 24, 2006
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20050273157
    Abstract: Disclosed is a stent having struts with reverse direction curvature for providing a reduced compressed profile and an increased expanded profile. The strut configuration comprises a plurality of arcuate sections facing in opposite convex and a concave orientation. The strut width may be gradually decreased from its ends towards the strut's mid-section to redistribute maximal strains away from portions of the stent more susceptible to permanent deformation, such as the loop portions. Varying strut lengths to offset the maximum circumferential widths of adjacent portions of the stent may further reduce the compressed stent profile. The varied stent lengths may also contribute to an increased expanded stent profile. Stents with the reverse direction curvature strut design can obtain an expanded to compressed stent diameter ratio of about 7:1 compared to conventional stents that have a ratio of up to about 5:1. The curved strut can be utilized with any stent design.
    Type: Application
    Filed: June 8, 2004
    Publication date: December 8, 2005
    Inventor: Gregory Pinchasik
  • Patent number: 6955687
    Abstract: A bifurcated stent for insertion into a bifurcated vessel such as a blood vessel. In one embodiment, a first sheet is formed into a first leg, a second sheet is formed into a second leg, a third sheet is formed into a stem, and the two legs are attached to the stem. In a second embodiment, a first sheet is formed into a member having a first leg and half of a stem, a second sheet is formed into a second member having a second leg and half of a stem, and the two stem halves are combined to form the bifurcated stent. In a third embodiment, the stent comprises two sections that are serially inserted and assembled within the vessel at the site of the bifurcation to be treated.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: October 18, 2005
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik