Patents by Inventor Gregory A. Wagoner

Gregory A. Wagoner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923783
    Abstract: A method for operating a multi-level bridge power converter includes arranging a plurality of switching devices including at least four inner switching devices and at least two outer switching devices in an active neutral point clamped topology. The method also includes determining whether any of the switching devices is experiencing a failure condition by implementing a failure detection algorithm. The failure detection algorithm includes generating a blocking state logic signal by comparing a switching device voltage and a threshold reference voltage for each of the switching devices, determining an expected voltage blocking state for each of the switching devices based on gate drive signals of the switching devices and an output current direction, and detecting whether a failure condition is present in any of the switching devices based on the blocking state logic signals and the expected voltage blocking states of the switching devices.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: March 5, 2024
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Kapil Jha, Fernando Arturo Ramirez Sanchez, Nathaniel Robert Michener, Arvind Kumar Tiwari, Robert Gregory Wagoner, Joseph Kiran Banda
  • Patent number: 11909302
    Abstract: A method for operating a multi-level bridge power converter of an electrical power system connected to a power grid includes providing a plurality of switching devices of the power converter in an active neutral point clamped topology. The method also includes operating the plurality of switching devices in a plurality of operating states such that current simultaneously flows through at least two parallel recovery paths of the plurality of switching devices during operation of the power converter to minimize a commutation path of the current when at least one diode of the plurality of switching devices recovers, thereby reducing parasitic inductance affecting the recovering antiparallel diode or the switch.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: February 20, 2024
    Assignee: GE Infrastructure Technology LLC
    Inventors: Fernando Arturo Ramirez Sanchez, Robert Gregory Wagoner, Nathaniel Robert Michener
  • Publication number: 20230344332
    Abstract: A method for operating a multi-level bridge power converter of an electrical power system connected to a power grid includes receiving a commanded state for one or more switching devices thereof. The method also includes receiving a gate-emitter voltage of one or more of the switching devices. Further, the method includes comparing, via at least one comparator, the gate-emitter voltage of the one or more switching devices to a reference voltage range corresponding to the commanded state of the one or more switching devices. In addition, the method includes determining an actual state of the one or more switching devices based on the comparison. Thus, the method also includes implementing a control action based on the actual state of the one or more switching devices.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 26, 2023
    Inventors: Nathaniel Robert Michener, Robert Gregory Wagoner
  • Publication number: 20230261473
    Abstract: A system and method for pre-charging a DC link of a multi-level power converter, to reduce electrical transients or to decrease a charging current when a converter contactor/disconnect switch is closed, is described. The systems and methods of the present disclosure also provides a new and simplified system for pre-charging a DC link of a multi-level power converter by leveraging a neutral point of a multi-level power converter and a single-line connection to the grid side of the power converter. The DC link charger of the present disclosure, therefore, is capable of reducing the quantity of dedicated superfluous hardware and/or excess resistors, contactors, transformers, fuses, diodes, balancing components, rectifier modules, etc. demanded by conventional systems. Reduced quantities of electronic components and hardware can thereby decrease system costs per unit and lead to significant cost savings.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 17, 2023
    Inventors: Fernando Arturo Ramirez Sanchez, Robert Gregory Wagoner, Zane Taylor Miller, Steven Wade Sutherland
  • Patent number: 11664715
    Abstract: A power electronics assembly for a power generation system includes a housing and an attenuator card positioned within the housing. The attenuator card may include at least one printed circuit board for a high-voltage attenuator circuit. The power electronics assembly also includes a potting material at least partially filling the housing on one or more sides of the attenuator card, a detachable end cap positioned at a first end of the housing, and multi-phase wiring communicatively coupled to the high-voltage attenuator circuit through the end cap.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: May 30, 2023
    Assignee: General Electric Company
    Inventors: John Springer Harrison, Benjamin Arthur Niemoeller, Stephen D. Nash, Robert Gregory Wagoner
  • Patent number: 11594953
    Abstract: A method for operating a multi-level bridge power converter of an electrical power system connected to a power grid includes providing a plurality of switching devices of the power converter in one of a neutral point clamped topology or an active neutral point clamped topology, the plurality of switching devices including a first group and a second group of switching devices. The method also includes providing a multi-state deadtime for the first and second groups of switching devices that changes based on different state transitions of the power converter. Further, the method includes operating the first and second groups of switching devices according to the multi-state deadtime to allow the first group to switch differently than the second group during the different state transitions, thereby decreasing voltage overshoots on the first group during one or more of the different state transitions and providing safe transition between commutation states of the power converter.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Fernando Arturo Ramirez Sanchez, Nathaniel Robert Michener, Robert Gregory Wagoner
  • Patent number: 11569712
    Abstract: A method for preventing damage in a bearing of a generator of an electrical power system includes monitoring one or more electrical signals of a power conversion assembly of the electrical power system. The method also includes estimating an impedance path of common mode current from a terminal to ground using the operating parameter(s) of the power conversion assembly. Further, the method includes determining a one or more magnitudes and/or a one or more phase angles of the impedance path at different frequencies, such a switching frequency and/or harmonics. Moreover, the method includes determining whether the impedance path is indicative of degradation in at least one of bearing insulation or a ground brush of the generator based on a change in the one or more magnitudes and/or the one or more phase angles. In addition, the method includes implementing a control action when the impedance path is indicative of degradation in the bearing insulation and/or the ground brush of the generator.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: January 31, 2023
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Rupam Mukherjee, Kapil Jha, Arvind Kumar Tiwari, Kum Kang Huh, Robert Gregory Wagoner
  • Patent number: 11552575
    Abstract: A method for operating a multi-level bridge power converter includes providing a plurality of switching devices of the power converter in one of a neutral point clamped topology or an active neutral point clamped topology. The method also includes providing a plurality of deadtimes for the switching devices. Further, the method includes selecting one of the deadtimes for each of the switching devices such that at least two of the switching devices operate according to different deadtimes. Moreover, the method includes operating the switching devices at the selected deadtimes to allow a first group of the switching devices to switch slower than a second group of the switching devices such that the first group of the switching devices satisfy safe operating requirements while the second group of the switching devices switch faster than the first group.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: January 10, 2023
    Assignee: General Electric Company
    Inventors: Nathaniel Robert Michener, Fernando Arturo Ramirez Sanchez, Steven Wade Sutherland, Robert Gregory Wagoner, Rajesh Bhupathi, Igor Berroteran
  • Patent number: 11545910
    Abstract: A power conversion assembly includes a power converter having a plurality of switching devices, a power source electrically coupled to the power converter, and a direct current (DC) filter circuit bridging the power converter and the power source. The DC filter circuit includes a DC link having a positive rail, a negative rail, and a capacitor bank. The capacitor bank includes a first set of capacitors being a first type of capacitors and a second set of capacitors being a different, second type of capacitors. Each capacitor in the first set of capacitors is positioned closer to a respective switching device of the plurality of switching devices than a corresponding capacitor of the second set of capacitors to minimize impedance between each capacitor in the first set of capacitors and the respective switching device such that a majority of ripple current from the plurality of switching devices passes through the first set of capacitors.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: January 3, 2023
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Rajesh Bhupathi, Robert Gregory Wagoner, Zane Taylor Miller, Fernando Arturo Ramirez Sanchez, Bacil Shaqqo, Joseph Kiran Banda
  • Patent number: 11486360
    Abstract: A method for controlling a power converter of a wind turbine power system connected to an electrical grid. The wind turbine power system has a generator and the power converter has rotor-side converter and a line-side converter. The method includes monitoring an electrical parameter of at least one of the wind turbine power system or the electrical grid. In response to detecting a transient event in the electrical grid, the method includes temporarily disabling the line-side converter of the power converter from the electrical grid. Either during the transient event or after the transient event is over, the method includes implementing a control action for the line-side converter of the power converter. Further, the method includes enabling the line-side converter of the power converter to the electrical grid.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: November 1, 2022
    Assignee: General Electric Company
    Inventors: Robert Gregory Wagoner, David Scott Wilmer
  • Patent number: 11486356
    Abstract: A system and method are provided for controlling a wind turbine. Accordingly, a controller of the wind turbine detects a loss of traction of the slip coupling between a generator and a rotor of the drivetrain of the wind turbine. In response to detecting the loss of traction, the controller overrides a generator torque setpoint to alter a rotational speed of the generator. In response to the altered rotational speed of the generator, the traction of the slip coupling is increased. Increasing the traction of the slip coupling facilitates an application of generator torque to the drivetrain of the wind turbine.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 1, 2022
    Assignee: General Electric Company
    Inventors: Cornelius Edward Holliday, III, Fernando Arturo Ramirez Sanchez, Mathew Doyle Angel, Nathan Michael Killeen, Edward Wayne Hardwicke, Jr., Steven Wade Sutherland, Robert Gregory Wagoner, Govardhan Ganireddy, Talha Irfanul Haque
  • Patent number: 11480153
    Abstract: A system and method are provided for controlling a wind turbine to protect the wind turbine from anomalous operations. Accordingly, in response to receiving data indicative of an anomalous operational event of the wind turbine, the controller initiates an enhanced braking mode for the wind turbine. The enhanced braking mode is characterized by operating the generator at a torque setpoint that generates maximum available torque for a given set of operating conditions. Additionally, the torque setpoint is in excess of a nominal torque limit for the generator.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: October 25, 2022
    Assignee: General Electric Company
    Inventors: Cornelius Edward Holliday, III, Mathew Doyle Angel, Robert Gregory Wagoner, Nathan Michael Killeen, Edward Wayne Hardwicke, Jr., Steven Wade Sutherland, Govardhan Ganireddy, Fernando Arturo Ramirez Sanchez, Talha Irfanul Haque
  • Publication number: 20220321039
    Abstract: A method for preventing damage in a bearing of a generator of an electrical power system includes monitoring one or more electrical signals of a power conversion assembly of the electrical power system. The method also includes estimating an impedance path of common mode current from a terminal to ground using the operating parameter(s) of the power conversion assembly. Further, the method includes determining a one or more magnitudes and/or a one or more phase angles of the impedance path at different frequencies, such a switching frequency and/or harmonics. Moreover, the method includes determining whether the impedance path is indicative of degradation in at least one of bearing insulation or a ground brush of the generator based on a change in the one or more magnitudes and/or the one or more phase angles. In addition, the method includes implementing a control action when the impedance path is indicative of degradation in the bearing insulation and/or the ground brush of the generator.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 6, 2022
    Inventors: Rupam Mukherjee, Kapil Jha, Arvind Kumar Tiwari, Kum Kang Huh, Robert Gregory Wagoner
  • Publication number: 20220294333
    Abstract: A method for operating a multi-level bridge power converter of an electrical power system connected to a power grid includes providing a plurality of switching devices of the power converter in an active neutral point clamped topology. The method also includes operating the plurality of switching devices in a plurality of operating states such that current simultaneously flows through at least two parallel recovery paths of the plurality of switching devices during operation of the power converter to minimize a commutation path of the current when at least one diode of the plurality of switching devices recovers, thereby reducing parasitic inductance affecting the recovering antiparallel diode or the switch.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 15, 2022
    Inventors: Fernando Arturo Ramirez Sanchez, Robert Gregory Wagoner, Nathaniel Robert Michener
  • Publication number: 20220065224
    Abstract: A system and method are provided for controlling a wind turbine. Accordingly, a controller of the wind turbine detects a loss of traction of the slip coupling between a generator and a rotor of the drivetrain of the wind turbine. In response to detecting the loss of traction, the controller overrides a generator torque setpoint to alter a rotational speed of the generator. In response to the altered rotational speed of the generator, the traction of the slip coupling is increased. Increasing the traction of the slip coupling facilitates an application of generator torque to the drivetrain of the wind turbine.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 3, 2022
    Inventors: Cornelius Edward Holliday, III, Fernando Arturo Ramirez Sanchez, Mathew Doyle Angel, Nathan Michael Killeen, Edward Wayne Hardwicke,, JR., Steven Wade Sutherland, Robert Gregory Wagoner, Govardhan Ganireddy, Talha Irfanul Haque
  • Publication number: 20220069726
    Abstract: A power conversion assembly includes a power converter having a plurality of switching devices, a power source electrically coupled to the power converter, and a direct current (DC) filter circuit bridging the power converter and the power source. The DC filter circuit includes a DC link having a positive rail, a negative rail, and a capacitor bank. The capacitor bank includes a first set of capacitors being a first type of capacitors and a second set of capacitors being a different, second type of capacitors. Each capacitor in the first set of capacitors is positioned closer to a respective switching device of the plurality of switching devices than a corresponding capacitor of the second set of capacitors to minimize impedance between each capacitor in the first set of capacitors and the respective switching device such that a majority of ripple current from the plurality of switching devices passes through the first set of capacitors.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Rajesh Bhupathi, Robert Gregory Wagoner, Zane Taylor Miller, Fernando Arturo Ramirez Sanchez, Bacil Shaqqo, Joseph Kiran Banda
  • Patent number: 11261846
    Abstract: A method for operating a wind turbine power system connected to an electrical grid includes collecting data relating to one or more parameters of one or more electrical components of the wind turbine power system. The method may also include performing a statistical analysis of the data relating to one or more parameters of the one or more electrical components. Further, the method includes predicting future behavior of the electrical component(s) based on the statistical analysis. Moreover, the method includes determining set points for the electrical component(s) using the predicted future behavior. In addition, the method includes operating the wind turbine power system at the determined set points for the electrical component(s) so as to optimize at least one characteristic of the electrical component(s).
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 1, 2022
    Assignee: General Electric Company
    Inventors: Robert Gregory Wagoner, Dale Robert Mashtare, Pedro Arsuaga Santos, James Gregory Rotbert
  • Patent number: 11258387
    Abstract: A method for controlling a three-level back-to-back voltage source power conversion assembly includes receiving an indication of a DC or AC unbalance occurring in voltage of a DC link. The power conversion assembly has a first power converter coupled to a second power converter via the DC link. In response to receiving the indication, the method includes activating a balancing algorithm that includes determining a deviation of a midpoint voltage of the DC link as a function of a total voltage of the DC link, calculating a voltage compensation needed for pulse-width modulation signals of the power conversion assembly based on the deviation, and coordinating common mode voltage injection from each of the power converters independently at a neutral point of the power conversion assembly based on the voltage compensation, thereby minimizing the at least one of the DC unbalance or the AC unbalance at any given operating condition.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 22, 2022
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Robert Gregory Wagoner, Joseph Kiran Banda, Kapil Jha, Fernando Arturo Ramirez Sanchez, Bacil Shaqqo, Hridya Ittamveettil
  • Patent number: 11196260
    Abstract: A method for operating a power generation system that supplies real and reactive power to a grid includes receiving a reactive power demand made on the power generation system at an operating state of the power generation system and a grid state. Further, the method includes decoupling reactive power control and voltage control between a generator and a reactive power compensation device so as to reduce an oscillatory response of a reactive power output from the reactive power compensation device and the generator. Moreover, the method includes operating, via a device controller, the reactive power compensation device in a reactive power control mode to generate at least a portion of the reactive power demand.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: December 7, 2021
    Assignee: General Electric Company
    Inventors: Jayanti Navilgone Ganesh, Arvind Kumar Tiwari, Kasi Viswanadha Raju Gadiraju, Igor Berroteran, Robert Gregory Wagoner, Cornelius Edward Holliday, III
  • Publication number: 20210363968
    Abstract: A system and method are provided for controlling a wind turbine to protect the wind turbine from anomalous operations. Accordingly, in response to receiving data indicative of an anomalous operational event of the wind turbine, the controller initiates an enhanced braking mode for the wind turbine. The enhanced braking mode is characterized by operating the generator at a torque setpoint that generates maximum available torque for a given set of operating conditions. Additionally, the torque setpoint is in excess of a nominal torque limit for the generator.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Inventors: Cornelius Edward Holliday, III, Mathew Doyle Angel, Robert Gregory Wagoner, Nathan Michael Killeen, Edward Wayne Hardwicke, JR., Steven Wade Sutherland, Govardhan Ganireddy, Fernando Arturo Ramirez Sanchez, Talha Irfanul Haque