Patents by Inventor Gregory Andrew Grossmann

Gregory Andrew Grossmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9353393
    Abstract: Methods and kits for efficient amplification of nucleic acids are provided. The disclosure generally relates to methods and kits for nucleic acid amplification of target nucleic acids of interest. The methods described herein promote the synthesis of the target nucleic acid (i.e., template nucleic acid) by reducing the production of undesirable primer-dimer structures and chimeric nucleic acid products during the amplification process by using novel modified primers.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 31, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Gregory Andrew Grossmann, Robert Scott Duthie, Sonali Jagdish Shah, Ryan Charles Heller
  • Publication number: 20160002621
    Abstract: A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; and flowing a nucleic acid amplification reaction mixture across a length of the substrate through the sample application zone to amplify the target nucleic acid forming a nucleic acid amplification product; wherein the target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight migrates away from the sample application zone. An associated device is also provided.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: John Richard Nelson, David Roger Moore, Robert Scott Duthie, Matthew Jeremiah Misner, Gregory Andrew Grossmann, Elizabeth Marie Dees, Patrick McCoy Spooner, Erik Leeming Kvam, Andrew Arthur Paul Burns, Vicki Herzl Watkins
  • Publication number: 20150166956
    Abstract: A device is configured for separation of particulates dispersed within a base fluid, wherein the particulates have a relative density difference compared to the base fluid. The device comprises a microchannel of length l and height h comprising an inlet and an outlet; a microporous surface on one or more walls of the microchannel; a collection chamber on an opposing side of the microporous surface; and an applied force field across the height h of the microchannel to sediment the particles through the microporous surface into the collection chamber. The microporous body operationally generates a fluid flow regime comprising a first fluid flow having a first flow rate through the microchannel and a second fluid flow having a second flow rate through the collection chamber and the second flow rate is a fraction of the first flow rate.
    Type: Application
    Filed: January 29, 2014
    Publication date: June 18, 2015
    Applicant: General Electric Company
    Inventors: Christopher Michael Puleo, Erik Leeming Kvam, Gregory Andrew Grossmann, Craig Patrick Galligan, Jason Michael Nichols, Xuefeng Wang, Jason Louis Davis
  • Publication number: 20150118683
    Abstract: A solid substrate for biological sample storage under dry-state and elution of biomolecules is provided. The dry, solid substrate comprises a surface modified with a plurality of hydrophilic groups; and the substrate is comprised of one or more protein denaturing agents impregnated therein under a substantially dry state. A method for elution of biomolecules from biological samples is also provided. The compositions disclosed herein provide for enhanced elution and recovery of biomolecules, such as nucleic acids, from the sample. The sample is disposed on a substrate, dried to a substantially dry state; eluted from the biological sample dried on the substrate by rehydrating the substrate in an elution buffer.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventors: Bing Li, Gregory Andrew Grossmann, David Roger Moore
  • Publication number: 20150119566
    Abstract: A solid substrate for biological sample storage under dry-state and elution of biomolecules is provided. The dry, solid substrate is coated with saccharides, such as monosaccharides, oligosaccharides, polysaccharides or combinations thereof, and the substrate is comprised of one or more protein denaturing agents impregnated therein under a substantially dry state. A method for elution of biomolecules from biological samples is also provided. The compositions disclosed herein provide for enhanced elution and recovery of biomolecules, such as nucleic acids, from the sample. The sample is disposed on a substrate, dried to a substantially dry state; eluted from the biological sample dried on the substrate by rehydrating the substrate in an elution buffer.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventors: Bing Li, Gregory Andrew Grossmann, Erik Leeming Kvam, Brian Christopher Bales, Jason Louis Davis
  • Publication number: 20150031035
    Abstract: Provided herein are methods for the collection and amplification of circulating nucleic acids from a non-cellular fraction of a biological sample. Circulating nucleic acids are extracted from the non-cellular fraction and are circularized to generate single-stranded nucleic acid circles, which are then subsequently amplified by rolling circular amplification using random primers to produce an amplified library. Devices for the collection of a non-cellular fraction from a biological sample are also provided. The device includes a filtration membrane and a dry solid matrix, which is in direct contact with the filtration membrane.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: General Electric Company
    Inventors: Erik Leeming Kvam, John Richard Nelson, Gregory Andrew Grossmann, Ryan Charles Heller, Erin Jean Finehout, Christopher Michael Puleo, William Patrick Waters
  • Patent number: 8921072
    Abstract: Methods and kits for generating circular nucleic acids in a cell-free system, and uses for the generated circular nucleic acids are provided. The methods comprise in vitro amplification of a nucleic acid template comprising a recombination site to produce tandem repeat nucleic acid sequence, and employ a recombination protein to generate the circular nucleic acids from the tandem repeat nucleic acid sequence.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: December 30, 2014
    Assignee: General Electric Compnay
    Inventors: John Richard Nelson, Nichole Lea Wood, Gregory Andrew Grossmann, Robert Scott Duthie
  • Patent number: 8778846
    Abstract: A composition includes a first probe, a first initiator component bonded to the first probe, a second probe, and a second initiator component bonded to the second probe. The first probe and the second probe are capable of binding to a single analyte, and the first initiator component and the second initiator component are capable of forming an initiator when present in proximity to each other and when the first probe and the second probe are bonded to the analyte. An associated kit, device, and method are provided.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 15, 2014
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Bahram Moasser, Anup Sood, Gregory Andrew Grossmann, Su Lu, Zhida Pan, Liangliang Qiang, John Yupeng Gui, Wei Cai, Zhixin Zheng
  • Patent number: 8765643
    Abstract: The composition includes a first probe and a first initiator bonded to the first probe. The composition further includes a second probe and a second initiator bonded to the second probe. The first probe and the second probe are capable of binding to a single analyte. An associated kit, device, and method are provided.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventors: Zhida Pan, Su Lu, Liangliang Qiang, John Yupeng Gui, John Richard Nelson, Bahram Moasser, Anup Sood, Gregory Andrew Grossmann, Wei Cai, Zhixin Zheng
  • Publication number: 20140004509
    Abstract: A kit for amplifying deoxynucleic acid (DNA) from ribonucleic acid (RNA) template is provided. The kit for amplifying a RNA comprises at least one inosine-containing primer; and at least one enzyme comprising a reverse transcriptase activity, a strand displacement DNA polymerase activity, a nuclease acitivity for nicking DNA 3? to an inosine residue of the primer or combinations thereof. The kit further comprises one or more quantifying reagents to detect the presence of RNA in a sample or quantify the RNA present in a sample.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossmann, Ryan Charles Heller
  • Publication number: 20140004508
    Abstract: A method of amplifying RNA template is provided. The method comprises reverse-transcribing a ribonucleic acid (RNA) template to form a cDNA using a first reaction mixture comprising RNA template, at least one primer capable of hybridizing to the RNA template, a reverse transcriptase and deoxynucleoside triphosphates (dNTPs); and amplifying the cDNA to form an amplified product using a second reaction mixture comprising at least one strand displacement DNA polymerase, at least one inosine-containing primer and a nuclease that is capable of nicking DNA 3? to an inosine residue of the primer. The method is accomplished under an isothermal condition without denaturing the cDNA template. A method of quantifying RNA template in a sample and a method of detecting RNA template in a sample are also provided.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossmann, Ryan Charles Heller
  • Publication number: 20130210078
    Abstract: Methods and kits for efficient amplification of nucleic acids are provided. The disclosure generally relates to methods and kits for nucleic acid amplification of target nucleic acids of interest. The methods described herein promote the synthesis of the target nucleic acid (i.e., template nucleic acid) by reducing the production of undesirable primer-dimer structures and chimeric nucleic acid products during the amplification process by using novel modified primers.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 15, 2013
    Applicant: General Electric Company
    Inventors: John Richard Nelson, Gregory Andrew Grossmann, Robert Scott Duthie, Sonali Jagdish Shah, Ryan Charles Heller
  • Patent number: 8361712
    Abstract: Methods and kits for generating contamination-free reagents and reagent solutions for use in nucleic acid amplification are provided. Methods include processing of polymerase solutions, nucleotide solutions and primer solutions to render contaminating nucleic acid inert. The methods employ the proofreading activity of the polymerase and/or exonucleases to de-contaminate the reagents and reagent solutions. Methods and kits for contamination-free nucleic acid amplification are provided.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 29, 2013
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossmann
  • Publication number: 20120196330
    Abstract: Provided herein are nucleic acid synthesis methods and agents that employ an endonuclease for example, endonuclease V, to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of the target DNA.
    Type: Application
    Filed: December 20, 2011
    Publication date: August 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Carl Williams Fuller, Gregory Andrew Grossmann, Anuradha Sekher
  • Patent number: 8202972
    Abstract: Provided herein are nucleic acid synthesis methods and agents that employ an endonuclease for example, endonuclease V, to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of the target DNA.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Robert Scott Duthie, Carl Williams Fuller, Gregory Andrew Grossmann, Anuradha Sekher
  • Publication number: 20120122735
    Abstract: A composition includes a first probe, a first initiator component bonded to the first probe, a second probe, and a second initiator component bonded to the second probe. The first probe and the second probe are capable of binding to a single analyte, and the first initiator component and the second initiator component are capable of forming an initiator when present in proximity to each other and when the first probe and the second probe are bonded to the analyte. An associated kit, device, and method are provided.
    Type: Application
    Filed: March 1, 2007
    Publication date: May 17, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Bahram Moasser, Anup Sood, Gregory Andrew Grossmann, Su Lu, Zhida Pan, Liangliang Qiang, John Yupeng Gui, Wei Cai, Zhixin Zheng
  • Publication number: 20120122733
    Abstract: The composition includes a first probe and a first initiator bonded to the first probe. The composition further includes a second probe and a second initiator bonded to the second probe. The first probe and the second probe are capable of binding to a single analyte. An associated kit, device, and method are provided.
    Type: Application
    Filed: March 1, 2007
    Publication date: May 17, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zhida Pan, Su Lu, Liangliang Qiang, John Yupeng Gui, John Richard Nelson, Bahram Moasser, Anup Sood, Gregory Andrew Grossmann, Wei Cai, Zhixin Zheng
  • Publication number: 20100055744
    Abstract: Methods and kits for generating circular nucleic acids in a cell-free system, and uses for the generated circular nucleic acids are provided. The methods comprise in vitro amplification of a nucleic acid template comprising a recombination site to produce tandem repeat nucleic acid sequence, and employ a recombination protein to generate the circular nucleic acids from the tandem repeat nucleic acid sequence.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 4, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Nichole Lea Wood, Gregory Andrew Grossmann, Robert Scott Duthie
  • Publication number: 20090155859
    Abstract: Methods and kits for generating contamination-free reagents and reagent solutions for use in nucleic acid amplification are provided. Methods include processing of polymerase solutions, nucleotide solutions and primer solutions to render contaminating nucleic acid inert. The methods employ the proofreading activity of the polymerase and/or exonucleases to de-contaminate the reagents and reagent solutions. Methods and kits for contamination-free nucleic acid amplification are provided.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossmann
  • Publication number: 20090011472
    Abstract: Provided herein are nucleic acid synthesis methods and agents that employ an endonuclease for example, endonuclease V, to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of the target DNA.
    Type: Application
    Filed: January 10, 2007
    Publication date: January 8, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: JOHN RICHARD NELSON, ROBERT SCOTT DUTHIE, CARL WILLIAMS FULLER, GREGORY ANDREW GROSSMANN, ANURADHA SEKHER