Patents by Inventor Gregory Arthur Clark

Gregory Arthur Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8855737
    Abstract: A system and method for electrically shielding a physiological pathway from electrical noise is disclosed. The method includes the operation of implanting at least one signal microelectrode into a patient such that the signal microelectrode is proximate to the physiological pathway. An additional operation includes substantially enclosing the microelectrode and a section of the physiological pathway with an electrical shielding wrap. The electrical shielding wrap includes a plurality of holes that enable fluid communication of physiological fluids between an inside and outside of the wrap.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: October 7, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Gregory Arthur Clark, David James Warren, Noah M. Ledbetter
  • Publication number: 20140114164
    Abstract: A system and method for electrically shielding a physiological pathway from electrical noise is disclosed. The method includes the operation of implanting at least one signal microelectrode into a patient such that the signal microelectrode is proximate to the physiological pathway. An additional operation includes substantially enclosing the microelectrode and a section of the physiological pathway with an electrical shielding wrap. The electrical shielding wrap includes a plurality of holes that enable fluid communication of physiological fluids between an inside and outside of the wrap.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Gregory Arthur Clark, David James Warren, Noah M. Ledbetter
  • Patent number: 8639312
    Abstract: A system and method for electrically shielding a physiological pathway from electrical noise is disclosed. The method includes the operation of implanting at least one signal microelectrode into a patient such that the signal microelectrode is proximate to the physiological pathway. An additional operation includes substantially enclosing the microelectrode and a section of the physiological pathway with an electrical shielding wrap. The electrical shielding wrap includes a plurality of holes that enable fluid communication of physiological fluids between an inside and outside of the wrap.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 28, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Gregory Arthur Clark, David J. Warren, Noah M. Ledbetter
  • Publication number: 20130046148
    Abstract: A hybrid optical-electrical neural interface is disclosed and described. The neural interface can include an array (100) having a plurality of micro-optrodes (HO). The micro-optrodes (110) are capable of optical and optionally electrical stimulation and recording, allowing bidirectional, multi-modal communication with neural tissue. At least a portion of the plurality of micro-optrodes (110) are independently optically addressable and include an optical waveguide along each micro-optrode (HO). Combining optical stimulation with electrical recording can allow artifact-free recording from nearby electrodes and in some cases even the same electrode, which is difficult to achieve with combined electrical recording and stimulation. The optical waveguide is configured to direct light towards a distal end (125) of the micro-optrode, allowing focal stimulation and recording. Penetrating micro-optrodes (110) can allow access to deep tissue, while non-penetrating micro-optrodes can be used for extraneural stimulation.
    Type: Application
    Filed: November 9, 2010
    Publication date: February 21, 2013
    Inventors: Prashant Tathireddy, Loren Rieth, Gregory Arthur Clark, Richard A. Normann, Florian Solzbacher, Steven Blair
  • Patent number: 8359083
    Abstract: A microelectrode array system used to sense physiological signals and stimulate physiological tissue to form signals is disclosed. The array includes a dielectric substrate and a two dimensional array of signal microelectrodes substantially perpendicular to and integrated on the dielectric substrate. At least one reference microelectrode is located adjacent to and integrated with the signal microelectrodes on the dielectric substrate. The reference microelectrodes are positioned on the dielectric substrate relative to the signal microelectrodes to enable a reduced level of electrical noise to be detected between the reference microelectrodes and the recording microelectrodes.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 22, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Gregory Arthur Clark, David J. Warren, Noah M. Ledbetter, Marcy Lloyd, Richard A. Normann
  • Publication number: 20100161019
    Abstract: A system and method for electrically shielding a physiological pathway from electrical noise is disclosed. The method includes the operation of implanting at least one signal microelectrode into a patient such that the signal microelectrode is proximate to the physiological pathway. An additional operation includes substantially enclosing the microelectrode and a section of the physiological pathway with an electrical shielding wrap. The electrical shielding wrap includes a plurality of holes that enable fluid communication of physiological fluids between an inside and outside of the wrap.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 24, 2010
    Inventors: Gregory Arthur Clark, David J. Warren, Noah M. Ledbetter
  • Publication number: 20090283425
    Abstract: A microelectrode array system used to sense physiological signals and stimulate physiological tissue to form signals is disclosed. The array includes a dielectric substrate and a two dimensional array of signal microelectrodes substantially perpendicular to and integrated on the dielectric substrate. At least one reference microelectrode is located adjacent to and integrated with the signal microelectrodes on the dielectric substrate. The reference microelectrodes are positioned on the dielectric substrate relative to the signal microelectrodes to enable a reduced level of electrical noise to be detected between the reference microelectrodes and the recording microelectrodes.
    Type: Application
    Filed: April 2, 2009
    Publication date: November 19, 2009
    Applicant: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Gregory Arthur Clark, David J. Warren, Noah M. Ledbetter, Marcy Lloyd, Richard A. Normann