Patents by Inventor Gregory G. Lavieu
Gregory G. Lavieu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11801508Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.Type: GrantFiled: January 29, 2021Date of Patent: October 31, 2023Assignee: Berkeley Lights, Inc.Inventors: Randall D. Lowe, Jr., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
-
Patent number: 11639495Abstract: Methods are described herein for isolating clonal populations of T cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual T cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the T cells into respective clonal populations of T cells; detecting, in one or more T cells of each clonal population, the absence of a cell surface marker that was present in the individual T cells (or precursors thereof); and detecting, in one or more T cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of T cells. Also described are compositions comprising one or more clonal populations of T cells isolated according to the methods disclosed herein.Type: GrantFiled: June 27, 2019Date of Patent: May 2, 2023Assignees: The Regents of the University of California, Berkeley Lights, Inc.Inventors: Alexander Marson, Gregory G. Lavieu, Annamaria Mocciaro, Theodore L. Roth, Magali Soumillon, Hayley M. Bennett
-
Publication number: 20230023831Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: ApplicationFiled: September 8, 2022Publication date: January 26, 2023Applicant: BERKLEY LIGHTS, INC.Inventors: Kristin G. BEAUMONT, Peter J. BEEMILLER, Volker L.S. KURZ, Gregory G. LAVIEU, Xiaohua WANG, Aathavan KARUNAKARAN
-
Patent number: 11454629Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: GrantFiled: June 22, 2020Date of Patent: September 27, 2022Assignee: Berkeley Lights, Inc.Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L. S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
-
Publication number: 20220250071Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.Type: ApplicationFiled: November 23, 2021Publication date: August 11, 2022Inventors: Troy A. LIONBERGER, Matthew E. FOWLER, Phillip J. M. ELMS, Kevin D. LOUTHERBACK, Randall D. LOWE, JR., Jian GONG, J. Tanner NEVILL, Gang F. WANG, Gregory G. LAVIEU, John A. TENNEY, Aathavan KARUNAKARAN, Anupam SINGHAL, I-Jong LIN
-
Patent number: 11273177Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.Type: GrantFiled: April 14, 2017Date of Patent: March 15, 2022Assignee: Berkeley Lights, Inc.Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Lavieu, Annamaria Mocciaro
-
Patent number: 11203018Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.Type: GrantFiled: October 15, 2018Date of Patent: December 21, 2021Assignee: Berkeley Lights, Inc.Inventors: Troy A. Lionberger, Matthew E. Fowler, Phillip J. M. Elms, Kevin D. Loutherback, Randall D. Lowe, Jr., Jian Gong, J. Tanner Nevill, Gang F. Wang, Gregory G. Lavieu, John A. Tenney, Aathavan Karunakaran, Anupam Singhal, I-Jong Lin
-
Publication number: 20210291171Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.Type: ApplicationFiled: January 29, 2021Publication date: September 23, 2021Applicant: Berkeley Lights, Inc.Inventors: Randall D. Lowe, JR., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
-
Patent number: 11103870Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.Type: GrantFiled: January 28, 2019Date of Patent: August 31, 2021Assignee: Berkeley Lights, Inc.Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
-
Patent number: 11007520Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.Type: GrantFiled: November 20, 2018Date of Patent: May 18, 2021Assignee: Berkeley Lights, Inc.Inventors: Randall D. Lowe, Jr., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
-
Publication number: 20210011015Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: ApplicationFiled: June 22, 2020Publication date: January 14, 2021Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L.S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
-
Patent number: 10705082Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: GrantFiled: December 7, 2016Date of Patent: July 7, 2020Assignee: Berkeley Lights, Inc.Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L. S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
-
Publication number: 20200048606Abstract: Methods are described herein for isolating clonal populations of T cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual T cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the T cells into respective clonal populations of T cells; detecting, in one or more T cells of each clonal population, the absence of a cell surface marker that was present in the individual T cells (or precursors thereof); and detecting, in one or more T cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of T cells. Also described are compositions comprising one or more clonal populations of T cells isolated according to the methods disclosed herein.Type: ApplicationFiled: June 27, 2019Publication date: February 13, 2020Applicants: The Regents of the University of California, Berkeley Lights, Inc.Inventors: Alexander Marson, Gregory G. Lavieu, Annamaria Mocciaro, Theodore L. Roth, Magali Soumillon, Hayley M. Bennett
-
Publication number: 20190275516Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.Type: ApplicationFiled: November 20, 2018Publication date: September 12, 2019Applicant: Berkeley Lights, Inc.Inventors: Randall D. Lowe, JR., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
-
Publication number: 20190240665Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.Type: ApplicationFiled: October 15, 2018Publication date: August 8, 2019Inventors: Troy A. LIONBERGER, Matthew E. FOWLER, Phillip J. M. ELMS, Kevin D. LOUTHERBACK, Randall D. LOWE, JR., Jian GONG, Tanner J. NEVILL, Gang F. WANG, Gregory G. LAVIEU, John A. TENNEY, Aathavan KARUNAKARAN
-
Publication number: 20190217297Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.Type: ApplicationFiled: January 28, 2019Publication date: July 18, 2019Applicant: Berkeley Lights, Inc.Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
-
Patent number: 10239058Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.Type: GrantFiled: November 2, 2017Date of Patent: March 26, 2019Assignee: Berkeley Lights, Inc.Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
-
Publication number: 20180147576Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.Type: ApplicationFiled: November 2, 2017Publication date: May 31, 2018Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
-
Publication number: 20170184583Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: ApplicationFiled: December 7, 2016Publication date: June 29, 2017Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L.S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran