Patents by Inventor Gregory Gordon Stevenson

Gregory Gordon Stevenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949289
    Abstract: A stator defines multiple stator poles with associated electrical windings. A rotor includes multiple rotor poles. The rotor is movable with respect to the stator and defines, together with the stator, a nominal gap between the stator poles and the rotor poles. The rotor poles includes a magnetically permeable pole material. The rotor also includes a series of frequency programmable flux channels (FPFCs). Each FPFC includes a conductive loop surrounding an associated rotor pole. The stator and the rotor are arranged such that the electrical windings in the stator induce an excitement current within at least one of the FPFCs during start-up.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 2, 2024
    Assignee: TAU MOTORS, INC.
    Inventors: Walter Wesley Pennington, III, Matthew J Rubin, Gregory Gordon Stevenson, Michael Parker Owen
  • Patent number: 11936255
    Abstract: An electric machine includes a stator and a rotor energizable by magnetic fields produced by the stator when receiving a stator current to produce relative motion between the rotor and the stator. A controller is configured to send the stator current through the stator at a current angle measured from the closest one of a pole of the rotor, determine a desired operational output of the electric machine, and determine a desired rotor motion corresponding to the desired operational output of the electric machine. The controller is further configured to calculate a vector control modulation applied to the stator that elicits the desired rotor motion, and adjust the current angle of the stator current based on the vector control modulation to cause the rotor to perform the desired rotor motion and achieve the desired operational output of the electric machine.
    Type: Grant
    Filed: June 9, 2023
    Date of Patent: March 19, 2024
    Assignee: Tau Motors, Inc.
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen, Ethan Bagget Swint, Matthias Preindl
  • Publication number: 20240014721
    Abstract: An electric machine includes a stator and a rotor energizable by magnetic fields produced by the stator when receiving a stator current to produce relative motion between the rotor and the stator. A controller is configured to send the stator current through the stator at a current angle measured from the closest one of a pole of the rotor, determine a desired operational output of the electric machine, and determine a desired rotor motion corresponding to the desired operational output of the electric machine. The controller is further configured to calculate a vector control modulation applied to the stator that elicits the desired rotor motion, and adjust the current angle of the stator current based on the vector control modulation to cause the rotor to perform the desired rotor motion and achieve the desired operational output of the electric machine.
    Type: Application
    Filed: June 9, 2023
    Publication date: January 11, 2024
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen, Ethan Bagget Swint, Matthias Preindl
  • Patent number: 11870319
    Abstract: An electric motor has a stator mechanically coupled to the rotor by a nutating traction interface, such that during nutation of the rotor with respect to the stator a tilt axis of the rotor progresses about the axis of rotation of the output shaft. The rotor and a surface of the stator bound a dynamic gap across which a magnetic field is produced by electrical activation of the motor to generate a force between the rotor and the stator. The traction interface and the gap are arranged such that, in a plane containing the axis of rotation of the output shaft, the traction interface is angled with respect to the stator surface bounding the gap. The rotor is connected to the output shaft by a tiltable connection such as a gimbal.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: January 9, 2024
    Assignee: Tau Motors, Inc.
    Inventors: Matthew J. Rubin, Walter Wesley Pennington, III, Adam Daniel Ambrecht, Gregory Gordon Stevenson
  • Publication number: 20230396111
    Abstract: An electric machine having a thermal management system includes a stator having a stator core, and a rotor having a rotor core that is moveable relative to the stator. At least one of the stator and the rotor include one or more windings. One or more coolant cans encapsulate one or more of the windings disposed on the at least one of the stator and the rotor in an interior compartment of the coolant can. The interior compartment of the coolant can defines a coolant flow passage through the one or more windings. The coolant can includes a coolant inlet and a coolant outlet in fluid connection with the interior compartment of the coolant can. The interior compartment of the one or more coolant cans are fluidically isolated from the stator core and the rotor core.
    Type: Application
    Filed: October 27, 2021
    Publication date: December 7, 2023
    Inventors: Walter Wesley Pennington, III, Ethan Bagget Swint, Gregory Gordon Stevenson, Michael Parker Owen, Matthew Joseph Reeve, Matthew J. Rubin
  • Patent number: 11831199
    Abstract: An electric motor has a stator defining multiple stator poles with associated electrical windings, and a rotor having multiple rotor poles. The rotor has flux barriers between adjacent rotor poles, the flux barriers each having a material with an electrical conductivity higher than the rotor pole material. The flux barriers are electrically isolated from one another external to the ferromagnetic material. Eddy currents are induced in the flux barrier to cause destructive interference of an impending magnetic field, such that the flux barrier effectively acts to inhibit magnetic flux during motor operation, which in some cases will result in a repulsive force that will act to increase an induced motive force on the rotor poles.
    Type: Grant
    Filed: February 16, 2023
    Date of Patent: November 28, 2023
    Assignee: Tau Motors, Inc.
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Adam Daniel Ambrecht, Euzeli Cipriano dos Santos, Jr.
  • Publication number: 20230336065
    Abstract: An electric motor has a stator mechanically coupled to the rotor by a nutating traction interface, such that during nutation of the rotor with respect to the stator a tilt axis of the rotor progresses about the axis of rotation of the output shaft. The rotor and a surface of the stator bound a dynamic gap across which a magnetic field is produced by electrical activation of the motor to generate a force between the rotor and the stator. The traction interface and the gap are arranged such that, in a plane containing the axis of rotation of the output shaft, the traction interface is angled with respect to the stator surface bounding the gap. The rotor is connected to the output shaft by a tiltable connection such as a gimbal.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Adam Daniel Ambrecht, Gregory Gordon Stevenson
  • Patent number: 11757338
    Abstract: An electric machine includes a stator and a rotor energizable by magnetic fields produced by the stator when receiving a stator current to produce relative motion between the rotor and the stator. A controller is configured to send the stator current through the stator at a current angle measured from the closest one of a pole of the rotor, determine a desired operational output of the electric machine, and determine a desired rotor motion corresponding to the desired operational output of the electric machine. The controller is further configured to calculate a vector control modulation applied to the stator that elicits the desired rotor motion, and adjust the current angle of the stator current based on the vector control modulation to cause the rotor to perform the desired rotor motion and achieve the desired operational output of the electric machine.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: September 12, 2023
    Assignee: Tau Motors, Inc.
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen, Ethan Bagget Swint, Matthias Preindl
  • Publication number: 20230231444
    Abstract: An electric machine includes a stator defining multiple stator poles with associated stator windings configured to receive a stator current. The electric machine also includes a rotor defining multiple fixed rotor poles with associated rotor windings, wherein the rotor defines a field energizable by magnetic fields produced by the stator windings when receiving the stator current to produce relative motion between the rotor and the stator and wherein the rotor is maintained in synchronicity with the magnetic fields produced by the stator during operation of the electric machine. The electric machine also includes a rectification system configured control against an alternating current being induced in the rotor poles as the field is energized by magnetic fields produced by the stator windings when receiving the stator current.
    Type: Application
    Filed: March 7, 2023
    Publication date: July 20, 2023
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen, Ethan Bagget Swint, Matthias Preindl
  • Publication number: 20230198341
    Abstract: An electric motor has a stator defining multiple stator poles with associated electrical windings, and a rotor having multiple rotor poles. The rotor has flux barriers between adjacent rotor poles, the flux barriers each having a material with an electrical conductivity higher than the rotor pole material. The flux barriers are electrically isolated from one another external to the ferromagnetic material. Eddy currents are induced in the flux barrier to cause destructive interference of an impending magnetic field, such that the flux barrier effectively acts to inhibit magnetic flux during motor operation, which in some cases will result in a repulsive force that will act to increase an induced motive force on the rotor poles.
    Type: Application
    Filed: February 16, 2023
    Publication date: June 22, 2023
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Adam Daniel Ambrecht, Euzeli Cipriano dos Santos, JR.
  • Publication number: 20230145709
    Abstract: An electric machine includes a stator and a rotor energizable by magnetic fields produced by the stator when receiving a stator current to produce relative motion between the rotor and the stator. A controller is configured to send the stator current through the stator at a current angle measured from the closest one of a pole of the rotor, determine a desired operational output of the electric machine, and determine a desired rotor motion corresponding to the desired operational output of the electric machine. The controller is further configured to calculate a vector control modulation applied to the stator that elicits the desired rotor motion, and adjust the current angle of the stator current based on the vector control modulation to cause the rotor to perform the desired rotor motion and achieve the desired operational output of the electric machine.
    Type: Application
    Filed: August 2, 2021
    Publication date: May 11, 2023
    Inventors: Walter Wesley PENNINGTON, III, Matthew J. RUBIN, Gregory Gordon STEVENSON, Michael Parker OWEN, Ethan BAGGET SWINT, Matthias PREINDL
  • Publication number: 20230148310
    Abstract: An electric machine includes a stator defining multiple stator poles with associated stator windings configured to receive a stator current. The electric machine also includes a rotor defining multiple fixed rotor poles with associated rotor windings, wherein the rotor defines a field energizable by magnetic fields produced by the stator windings when receiving the stator current to produce relative motion between the rotor and the stator and wherein the rotor is maintained in synchronicity with the magnetic fields produced by the stator during operation of the electric machine. The electric machine also includes a rectification system configured control against an alternating current being induced in the rotor poles as the field is energized by magnetic fields produced by the stator windings when receiving the stator current.
    Type: Application
    Filed: August 2, 2021
    Publication date: May 11, 2023
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen, Ethan Bagget Swint, Mathias Preindl
  • Patent number: 11637481
    Abstract: An electric machine includes a stator defining multiple stator poles with associated stator windings configured to receive a stator current. The electric machine also includes a rotor defining multiple fixed rotor poles with associated rotor windings, wherein the rotor defines a field energizable by magnetic fields produced by the stator windings when receiving the stator current to produce relative motion between the rotor and the stator and wherein the rotor is maintained in synchronicity with the magnetic fields produced by the stator during operation of the electric machine. The electric machine also includes a rectification system configured control against an alternating current being induced in the rotor poles as the field is energized by magnetic fields produced by the stator windings when receiving the stator current.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: April 25, 2023
    Assignee: Tau Motors, Inc.
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen, Ethan Bagget Swint, Matthias Preindl
  • Publication number: 20230121580
    Abstract: A stator defines multiple stator poles with associated electrical windings. A rotor includes multiple rotor poles. The rotor is movable with respect to the stator and defines, together with the stator, a nominal gap between the stator poles and the rotor poles. The rotor poles includes a magnetically permeable pole material. The rotor also includes a series of frequency programmable flux channels (FPFCs). Each FPFC includes a conductive loop surrounding an associated rotor pole. The stator and the rotor are arranged such that the electrical windings in the stator induce an excitement current within at least one of the FPFCs during start-up.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen
  • Patent number: 11621612
    Abstract: An electric motor has a stator defining multiple stator poles with associated electrical windings, and a rotor having multiple rotor poles. The rotor has flux barriers between adjacent rotor poles, the flux barriers each having a material with an electrical conductivity higher than the rotor pole material. The flux barriers are electrically isolated from one another external to the ferromagnetic material. Eddy currents are induced in the flux barrier to cause destructive interference of an impending magnetic field, such that the flux barrier effectively acts to inhibit magnetic flux during motor operation, which in some cases will result in a repulsive force that will act to increase an induced motive force on the rotor poles.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: April 4, 2023
    Assignee: Tau Motors, Inc.
    Inventors: Matthew J. Rubin, Walter Wesley Pennington, III, Gregory Gordon Stevenson, Adam Daniel Ambrecht, Euzeli Cipriano dos Santos, Jr.
  • Patent number: 11563347
    Abstract: A stator defines multiple stator poles with associated electrical windings. A rotor includes multiple rotor poles. The rotor is movable with respect to the stator and defines, together with the stator, a nominal gap between the stator poles and the rotor poles. The rotor poles includes a magnetically permeable pole material. The rotor also includes a series of frequency programmable flux channels (FPFCs). Each FPFC includes a conductive loop surrounding an associated rotor pole. The stator and the rotor are arranged such that the electrical windings in the stator induce an excitement current within at least one of the FPFCs during start-up.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: January 24, 2023
    Assignee: Tau Motors, Inc.
    Inventors: Walter Wesley Pennington, III, Matthew J. Rubin, Gregory Gordon Stevenson, Michael Parker Owen
  • Publication number: 20220376597
    Abstract: An electric motor has a stator mechanically coupled to the rotor by a nutating traction interface, such that during nutation of the rotor with respect to the stator a tilt axis of the rotor progresses about the axis of rotation of the output shaft. The rotor and a surface of the stator bound a dynamic gap across which a magnetic field is produced by electrical activation of the motor to generate a force between the rotor and the stator. The traction interface and the gap are arranged such that, in a plane containing the axis of rotation of the output shaft, the traction interface is angled with respect to the stator surface bounding the gap. The rotor is connected to the output shaft by a tiltable connection such as a gimbal.
    Type: Application
    Filed: August 5, 2022
    Publication date: November 24, 2022
    Inventors: Matthew J. Rubin, Walter Wesley Pennington, III, Adam Daniel Ambrecht, Gregory Gordon Stevenson
  • Patent number: 11451124
    Abstract: An electric motor has a stator mechanically coupled to the rotor by a nutating traction interface, such that during nutation of the rotor with respect to the stator a tilt axis of the rotor progresses about the axis of rotation of the output shaft. The rotor and a surface of the stator bound a dynamic gap across which a magnetic field is produced by electrical activation of the motor to generate a force between the rotor and the stator. The traction interface and the gap are arranged such that, in a plane containing the axis of rotation of the output shaft, the traction interface is angled with respect to the stator surface bounding the gap. The rotor is connected to the output shaft by a tiltable connection such as a gimbal.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: September 20, 2022
    Assignee: Tau Motors, Inc.
    Inventors: Matthew J. Rubin, Walter Wesley Pennington, III, Adam Daniel Ambrecht, Gregory Gordon Stevenson
  • Publication number: 20210384811
    Abstract: An electric motor has a stator mechanically coupled to the rotor by a nutating traction interface, such that during nutation of the rotor with respect to the stator a tilt axis of the rotor progresses about the axis of rotation of the output shaft. The rotor and a surface of the stator bound a dynamic gap across which a magnetic field is produced by electrical activation of the motor to generate a force between the rotor and the stator. The traction interface and the gap are arranged such that, in a plane containing the axis of rotation of the output shaft, the traction interface is angled with respect to the stator surface bounding the gap. The rotor is connected to the output shaft by a tiltable connection such as a gimbal.
    Type: Application
    Filed: May 23, 2019
    Publication date: December 9, 2021
    Inventors: Matthew J. Rubin, Walter Wesley Pennington, III, Adam Daniel Ambrecht, Gregory Gordon Stevenson
  • Publication number: 20210249937
    Abstract: An electric motor has a stator defining multiple stator poles with associated electrical windings, and a rotor having multiple rotor poles. The rotor has flux barriers between adjacent rotor poles, the flux barriers each having a material with an electrical conductivity higher than the rotor pole material. The flux barriers are electrically isolated from one another external to the ferromagnetic material. Eddy currents are induced in the flux barrier to cause destructive interference of an impending magnetic field, such that the flux barrier effectively acts to inhibit magnetic flux during motor operation, which in some cases will result in a repulsive force that will act to increase an induced motive force on the rotor poles.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Inventors: Matthew J. Rubin, Walter Wesley Pennington, III, Gregory Gordon Stevenson, Adam Daniel Ambrecht, Euzeli Cipriano dos Santos, JR.