Patents by Inventor Gregory Hager

Gregory Hager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127691
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Application
    Filed: November 13, 2023
    Publication date: April 18, 2024
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Patent number: 11854379
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: December 26, 2023
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kelleher Guerin, Gregory Hager
  • Publication number: 20230321820
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Patent number: 11712800
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: August 1, 2023
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kelleher Guerin, Gregory Hager
  • Publication number: 20210383682
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Publication number: 20210379756
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 9, 2021
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Patent number: 11100791
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 24, 2021
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kelleher Guerin, Gregory Hager
  • Patent number: 11097415
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 24, 2021
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kelleher Guerin, Gregory Hager
  • Publication number: 20200320859
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 8, 2020
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Patent number: 10657802
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 19, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kelleher Guerin, Gregory Hager
  • Publication number: 20190344438
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Patent number: 10399220
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: September 3, 2019
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kelleher Guerin, Gregory Hager
  • Publication number: 20170120440
    Abstract: Provided is a method, device, and computer-readable medium for controlling a robot graphic user interface (“RGUI”) on a mobile device. The method can include determining a distance, a position, or both of the mobile device with respect to a first robot; and causing, by a processor, a first RGUI to be displayed on a display of the mobile device based on the determining.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 4, 2017
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Publication number: 20170120441
    Abstract: Methods and systems for connection-driven generation of robotic user interfaces and modification of robotic properties include detecting a connection of a robotic peripheral to a robot; obtaining a peripheral property set corresponding to the robotic peripheral, wherein the peripheral property set includes one or more properties of the robotic peripheral; modifying, based on the peripheral property set, a robotic property set that includes one or more properties of the robot to provide a modified robotic property set; generating, during runtime, a robotic graphical user interface (“RGUI”) dynamically based on the peripheral property set, wherein the RGUI provides at least one user-accessible interface to control the robot and the robotic peripheral; and controlling, based on the modified robotic property set, the robot and the robotic peripheral in response to user input received via the RGUI.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 4, 2017
    Inventors: Kelleher GUERIN, Gregory HAGER
  • Patent number: 9610063
    Abstract: A system and method for improved ultrasound strain imaging includes using data from a tracking system to enhance the quality of ultrasound strain image and to reduce the dependency of image quality of the user's expertise. The tracking information is synchronized with the RF frames and interpolated to find the transformation corresponding to each frame. The RF frames with their transformations are incorporated into calculation of ultrasound strain images. The tracking system may be an optical tracker, electromagnetic tracker, accelerometer, or a structured light system. The structured light system may also be used for probe calibration, by calibrating the surface of the probe pre-operatively. In addition, a relative Young's Modulus may be calculated using tracking information that is independent from the distribution of input force.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 4, 2017
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Pezhman Foroughi, Emad Boctor, Gregory Hager
  • Patent number: 9283675
    Abstract: A semi-automatic, interactive robotic system for performing and/or simulating a multi-step task includes a user interface system, a recognition system adapted to communicate with the user interface system, a control system adapted to communicate with the recognition system, and a sensor-actuator system adapted to communicate with the control system. The recognition system is configured to recognize actions taken by a user while the user operates the user interface system and to selectively instruct the control system to cause the sensor-actuator system to perform, and/or simulate, one of an automatic step, a semi-automatic step or direct step of the multi-step task based on the recognized actions and a task model of the multi-step task.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: March 15, 2016
    Assignee: The Johns Hopkins University
    Inventors: Gregory Hager, Nicolas Padoy
  • Patent number: 8824762
    Abstract: A method of processing ultrasound data includes receiving ultrasound data for a first ultrasound image, the first ultrasound image being represented as a first set of discrete pixels corresponding to positions of a region of interest; receiving ultrasound data for a second ultrasound image, the second ultrasound image being represented as a second set of discrete pixels corresponding to positions of the region of interest; generating a displacement map by minimizing a cost function using a dynamic programming procedure that identifies each of the first set of discrete pixels with a corresponding one of the second set of discrete pixels; refining the displacement map to obtain intermediate displacement values corresponding to positions between the discrete pixels based on minimizing a local approximation to the cost function; and calculating a physical property of the region of interest based on the displacement map.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 2, 2014
    Assignee: The Johns Hopkins University
    Inventors: Hassan Rivaz, Gregory Hager, Emad M. Boctor, Ioana Fleming
  • Publication number: 20140075370
    Abstract: In accordance with an aspect of the present invention, a device and a method allows for body-based interaction with 3D applications on wall displays. The interface consists of virtual dockable tools which can be unholstered, used to manipulate geometry, and holstered on the user's body. The system also utilizes proprioceptive cues to allow the user to manipulate and holster tools without visual feedback. A 3D depth camera maps 3D user position to 3D coordinates in the virtual scene. Partitioning the physical work space into a region for interaction with geometry, and a region for tool management allows for intuitive mapping between the physical and virtual work space. The system can support multiple users, including simultaneous interaction with the environment, and tool exchange between users.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 13, 2014
    Applicant: The Johns Hopkins University
    Inventors: Kelleher Riccio Guerin, Gregory Hager
  • Patent number: 8559685
    Abstract: Disclosed is a system and method for computing out of plane motion between two ultrasound images. The method identifies regions of fully developed speckle that are common to the two images, computes a correlation coefficient corresponding to the two fully developed speckle image regions, and then computing an elevation distance corresponding to the correlation coefficient. The method exploits the measurable and characterizable relation between inter-image correlation and elevation distance, which may be determined from fully developed speckle regions. The method also identifies regions within the ultrasound images related to structure (e.g., vein or bone), and disregards these regions.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: October 15, 2013
    Assignee: The Johns Hopkins University
    Inventors: Hassan Rivaz, Emad Moussa Boctor, Gabor Fichtinger, Gregory Hager
  • Publication number: 20130218340
    Abstract: A semi-automatic, interactive robotic system for performing and/or simulating a multi-step task includes a user interface system, a recognition system adapted to communicate with the user interface system, a control system adapted to communicate with the recognition system, and a sensor-actuator system adapted to communicate with the control system. The recognition system is configured to recognize actions taken by a user while the user operates the user interface system and to selectively instruct the control system to cause the sensor-actuator system to perform, and/or simulate, one of an automatic step, a semi-automatic step or direct step of the multi-step task based on the recognized actions and a task model of the multi-step task.
    Type: Application
    Filed: November 14, 2011
    Publication date: August 22, 2013
    Applicant: The John Hopkins University
    Inventors: Gregory Hager, Nicolas Padoy