Patents by Inventor Gregory Hauck

Gregory Hauck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8583219
    Abstract: In a possible implementation, a method for cardiac testing is provided which includes measuring test data associated with cardiac events and storing the test data in an intracardiac stimulation device. The method further includes acquiring event electrograms corresponding with the test data and storing the event electrograms corresponding with the test data in the intracardiac stimulation device. In a possible implementation, marker data is stored associating event electrograms with measured test data, which may identify the event electrograms used for measuring the test data and/or identify when adjacent event electrograms are not contiguous. In some implementations, the test data may be measured and stored in an out-of-clinic test, and the test data and the corresponding event electrograms may be later retrieved from the intracardiac stimulation device and presented on a visual display.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: November 12, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Jennifer Rhude, Elia A. Mouchawar, David Houck, Gregory Hauck, Tejpal Singh, Monique Prue
  • Patent number: 8560056
    Abstract: In a possible implementation, a method for cardiac testing is provided which includes measuring test data associated with cardiac events and storing the test data in an intracardiac stimulation device. The method further includes acquiring event electrograms corresponding with the test data and storing the event electrograms corresponding with the test data in the intracardiac stimulation device. In a possible implementation, marker data is stored associating event electrograms with measured test data, which may identify the event electrograms used for measuring the test data and/or identify when adjacent event electrograms are not contiguous. In some implementations, the test data may be measured and stored in an out-of-clinic test, and the test data and the corresponding event electrograms may be later retrieved from the intracardiac stimulation device and presented on a visual display.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 15, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Jennifer Rhude, Elia A. Mouchawar, David Houck, Gregory Hauck, Tejpal Singh, Monique Prue
  • Patent number: 8271081
    Abstract: Techniques are described for discriminating ventricular tachycardia (VT) from supraventricular tachycardia (SVT) in circumstances when the ventricular rate exceeds the atrial rate (i.e. V>A). In one example, an initial atrial rate is detected while employing adjustable atrial channel detection parameters that can affect the detection of the true atrial rate—such as a post-ventricular atrial blanking (PVAB) interval or an atrial channel sensitivity level. If the ventricular rate exceeds a VT rate zone threshold with V>A, the device does not immediately deliver high voltage shock therapy as done in other devices. Rather, the device instead selectively adjusts the atrial channel detection parameter(s) to determine if the true atrial rate is equal to the ventricular rate. If so, then such is an indication that the arrhythmia might be SVT rather than VT and various discrimination procedures are employed to distinguish SVT from VT before therapy is delivered.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 18, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Gregory Hauck, Martin Cholette
  • Patent number: 8260407
    Abstract: In a possible implementation, a method for cardiac testing is provided which includes measuring test data associated with cardiac events and storing the test data in an intracardiac stimulation device. The method further includes acquiring event electrograms corresponding with the test data and storing the event electrograms corresponding with the test data in the intracardiac stimulation device. In a possible implementation, marker data is stored associating event electrograms with measured test data, which may identify the event electrograms used for measuring the test data and/or identify when adjacent event electrograms are not contiguous. In some implementations, the test data may be measured and stored in an out-of-clinic test, and the test data and the corresponding event electrograms may be later retrieved from the intracardiac stimulation device and presented on a visual display.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: September 4, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Jennifer Rhude, Elia A. Mouchawar, David Houck, Gregory Hauck, Tejpal Singh, Monique Prue
  • Publication number: 20110282405
    Abstract: Techniques are described for discriminating ventricular tachycardia (VT) from supraventricular tachycardia (SVT) in circumstances when the ventricular rate exceeds the atrial rate (i.e. V>A). In one example, an initial atrial rate is detected while employing adjustable atrial channel detection parameters that can affect the detection of the true atrial rate—such as a post-ventricular atrial blanking (PVAB) interval or an atrial channel sensitivity level. If the ventricular rate exceeds a VT rate zone threshold with V>A, the device does not immediately deliver high voltage shock therapy as done in other devices. Rather, the device instead selectively adjusts the atrial channel detection parameter(s) to determine if the true atrial rate is equal to the ventricular rate. If so, then such is an indication that the arrhythmia might be SVT rather than VT and various discrimination procedures are employed to distinguish SVT from VT before therapy is delivered.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 17, 2011
    Applicant: PACESETTER, INC.
    Inventors: Gregory Hauck, Martin Cholette
  • Patent number: 6847843
    Abstract: An implantable cardiac stimulation device and associated method capable of delivering non-invasive programmed stimulation for electrophysiological testing in which the onset of the non-invasive programmed stimulation is triggered by a cardiac event, either a detected intrinsic event or a stimulated event, occurring in the heart chamber to be tested. When a non-invasive programmed stimulation command is received by the implanted device, it switches to a routine that allows transition to a non-invasive programmed stimulation from a standard operating mode, during a refractory period. The stimulation device also provides a recovery delay following the last pulse of a non-invasive programmed stimulation sequence. If no intrinsic activity is detected during the recovery delay, a refractory period is started following the expiration of the recovery delay.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: January 25, 2005
    Assignee: Pacesetter, Inc.
    Inventors: Elia Arambula Mouchawar, Bonian Dai, Mohssen Fard, Gregory Hauck, Corey L. Brown
  • Patent number: 6647295
    Abstract: A pacemaker or other implantable cardiac stimulation device is configured with both a rate hysteresis mode and a vasovagal syncope prevention mode. Within the rate hysteresis mode, the pacemaker detects when the intrinsic heart rate of the patient is below an escape rate, then paces the heart at a Base Rate until an intrinsic beat is detected. When programmed in the vasovagal syncope prevention mode, upon detecting the intrinsic rate falling below the Hysteresis Escape Rate, the pacemaker paces the heart at a Vasovagal Syncope Response Rate, which is considerably higher than the Base Rate. The pacemaker is preferably set to the syncope prevention mode for patients prone to recurrent vasovagal syncope. By pacing the heart at the higher Vasovagal Syncope Response Rate, the pacemaker thereby helps prevent a significant drop in blood pressure which might otherwise cause a loss of consciousness in the patient. System and method embodiments are described.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: November 11, 2003
    Assignee: PaceSetter, Inc.
    Inventors: Joseph J. Florio, Gregory Hauck, Gene A. Bornzin
  • Patent number: 6625492
    Abstract: A pacemaker or other implantable cardiac stimulation device is configured with both a rate hysteresis mode and a vasovagal syncope prevention mode. Within the rate hysteresis mode, the pacemaker detects when the intrinsic heart rate of the patient is below an escape rate, then paces the heart at a Base Rate until an intrinsic beat is detected. When programmed in the vasovagal syncope prevention mode, upon detecting the intrinsic rate falling below the Hysteresis Escape Rate, the pacemaker paces the heart at a Vasovagal Syncope Response Rate, which is considerably higher than the Base Rate. The pacemaker is preferably set to the syncope prevention mode for patients prone to recurrent vasovagal syncope. By pacing the heart at the higher Vasovagal Syncope Response Rate, the pacemaker thereby helps prevent a significant drop in blood pressure which might otherwise cause a loss of consciousness in the patient. System and method embodiments are described.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: September 23, 2003
    Assignee: Pacesetter, Inc.
    Inventors: Joseph J. Florio, Gregory Hauck, Gene A. Bornzin
  • Publication number: 20020004670
    Abstract: A pacemaker or other implantable cardiac stimulation device is configured with both a rate hysteresis mode and a vasovagal syncope prevention mode. Within the rate hysteresis mode, the pacemaker detects when the intrinsic heart rate of the patient is below an escape rate, then paces the heart at a Base Rate until an intrinsic beat is detected. When programmed in the vasovagal syncope prevention mode, upon detecting the intrinsic rate falling below the Hysteresis Escape Rate, the pacemaker paces the heart at a Vasovagal Syncope Response Rate, which is considerably higher than the Base Rate. The pacemaker is preferably set to the syncope prevention mode for patients prone to recurrent vasovagal syncope. By pacing the heart at the higher Vasovagal Syncope Response Rate, the pacemaker thereby helps prevent a significant drop in blood pressure which might otherwise cause a loss of consciousness in the patient. System and method embodiments are described.
    Type: Application
    Filed: May 3, 2001
    Publication date: January 10, 2002
    Inventors: Joseph J. Florio, Gregory Hauck, Gene A. Bornzin
  • Publication number: 20020004672
    Abstract: A pacemaker or other implantable cardiac stimulation device is configured with both a rate hysteresis mode and a vasovagal syncope prevention mode. Within the rate hysteresis mode, the pacemaker detects when the intrinsic heart rate of the patient is below an escape rate, then paces the heart at a Base Rate until an intrinsic beat is detected. When programmed in the vasovagal syncope prevention mode, upon detecting the intrinsic rate falling below the Hysteresis Escape Rate, the pacemaker paces the heart at a Vasovagal Syncope Response Rate, which is considerably higher than the Base Rate. The pacemaker is preferably set to the syncope prevention mode for patients prone to recurrent vasovagal syncope. By pacing the heart at the higher Vasovagal Syncope Response Rate, the pacemaker thereby helps prevent a significant drop in blood pressure which might otherwise cause a loss of consciousness in the patient. System and method embodiments are described.
    Type: Application
    Filed: May 3, 2001
    Publication date: January 10, 2002
    Inventors: Joseph J. Florio, Gregory Hauck, Gene A. Bornzin
  • Patent number: 6128533
    Abstract: An implantable dual-chamber pacemaker programmed to operate primarily in an atrial tracking mode includes an atrial rate smoothing filter for producing a filtered atrial rate (FAR) from an intrinsic atrial rate. The pacemaker automatically switches its mode of operation from an atrial tracking mode (i.e., DDD, DDDR, VDD, VDDR, DDT or DDTR) to a non-atrial tracking mode (i.e., DDI, DDIR, VDI, VDIR, DDT or DDTR), in the event the filtered atrial rate exceeds a prescribed upper rate limit. Synchronously with this mode switch, the pacemaker automatically shortens a post ventricular atrial refractory period (PVARP) to a minimum, predefined or programmable value. In one embodiment, the shortened PVARP is set equal to a post ventricular atrial blanking period (PVAB) that ranges between approximately 50 msec and 200 msec. While in the alternate mode of operation, the pacemaker maintains the shortened PVARB refractory period, and continues to monitor the FAR.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: October 3, 2000
    Assignee: Pacesetter, Inc.
    Inventors: Joseph J. Florio, Gregory Hauck