Patents by Inventor Gregory Herdt

Gregory Herdt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8226835
    Abstract: A method of preparing a thin film on a substrate is described. The method comprises forming an ultra-thin hermetic film over a portion of a substrate using a gas cluster ion beam (GCIB), wherein the ultra-thin hermetic film has a thickness less than approximately 5 nm. The method further comprises providing a substrate in a reduced-pressure environment, and generating a GCIB in the reduced-pressure environment from a pressurized gas mixture. A beam acceleration potential and a beam dose are selected to achieve a thickness of the thin film less than about 5 nanometers (nm). The GCIB is accelerated according to the beam acceleration potential, and the accelerated GCIB is irradiated onto at least a portion of the substrate according to the beam dose. By doing so, the thin film is formed on the at least a portion of the substrate to achieve the thickness desired.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: July 24, 2012
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Edmund Burke, Noel Russell, Gregory Herdt
  • Patent number: 7964436
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 21, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Patent number: 7871929
    Abstract: Methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments, the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: January 18, 2011
    Assignee: TEL Epion Inc.
    Inventors: Noel Russell, Frank M. Cerio, Jr., Gregory Herdt
  • Publication number: 20100227142
    Abstract: A method of preparing a thin film on a substrate is described. The method comprises forming an ultra-thin hermetic film over a portion of a substrate using a gas cluster ion beam (GCIB), wherein the ultra-thin hermetic film has a thickness less than approximately 5 nm. The method further comprises providing a substrate in a reduced-pressure environment, and generating a GCIB in the reduced-pressure environment from a pressurized gas mixture. A beam acceleration potential and a beam dose are selected to achieve a thickness of the thin film less than about 5 nanometers (nm). The GCIB is accelerated according to the beam acceleration potential, and the accelerated GCIB is irradiated onto at least a portion of the substrate according to the beam dose. By doing so, the thin film is formed on the at least a portion of the substrate to achieve the thickness desired.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 9, 2010
    Applicant: TEL Epion Inc.
    Inventors: John J. Hautala, Edmund Burke, Noel Russell, Gregory Herdt
  • Patent number: 7776743
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers are generally described herein. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: August 17, 2010
    Assignee: TEL Epion Inc.
    Inventors: Noel Russell, Frank M. Cerio, Jr., Gregory Herdt
  • Publication number: 20100029078
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers are generally described herein. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 4, 2010
    Applicant: TEL EPION INC.
    Inventors: Noel Russell, Frank M. Cerio, JR., Gregory Herdt
  • Publication number: 20100029071
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices containing metal cap layers are generally described herein. According to one embodiment, a method of forming a semiconductor device includes planarizing a top surface of a workpiece to form a substantially planar surface with conductive paths and dielectric regions, forming metal cap layers on the conductive paths, and exposing the top surface of the workpiece to a dopant source from a gas cluster ion beam (GCIB) to form doped metal cap layers on the conductive paths and doped dielectric layers on the dielectric regions. According to some embodiments the metal cap layers and the doped metal cap layers contain a noble metal selected from Pt, Au, Ru, Rh, Ir, and Pd.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Applicant: TEL EPION INC.
    Inventors: Noel Russell, Frank M. Cerio, JR., Gregory Herdt
  • Publication number: 20090098717
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 16, 2009
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Patent number: 7446393
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Publication number: 20070164398
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Application
    Filed: February 26, 2007
    Publication date: July 19, 2007
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung Doan
  • Patent number: 7202104
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: April 10, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Patent number: 6890790
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Publication number: 20040235235
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Application
    Filed: June 29, 2004
    Publication date: November 25, 2004
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Publication number: 20030228717
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GeXSe1-X) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Application
    Filed: June 6, 2002
    Publication date: December 11, 2003
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan