Patents by Inventor Gregory J. Bullington
Gregory J. Bullington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11903710Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.Type: GrantFiled: April 12, 2023Date of Patent: February 20, 2024Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Jay M. Miazga, Shan E. Gaw, Timothy F. Ramsey
-
Patent number: 11903709Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.Type: GrantFiled: April 3, 2023Date of Patent: February 20, 2024Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Jay M. Miazga, Shan E. Gaw, Timothy F. Ramsey
-
Publication number: 20240050001Abstract: A system for verifying a sample volume includes a sample reservoir and a volumetric verification device. The sample reservoir defines an inner volume and is configured to receive a volume of bodily fluid. The inner volume of the sample reservoir contains an additive. The volumetric verification device includes a first indicator and a second indicator. The volumetric verification device is configured to selectively engage the sample reservoir to (1) place the first indicator in a first position along a length of the sample reservoir such that the first indicator is substantially aligned with a surface and/or meniscus of the additive and (2) place the second indicator in a second position along the length of the sample reservoir such that the second indicator is substantially aligned with a predetermined fill volume when bodily fluid is transferred to the inner volume.Type: ApplicationFiled: February 24, 2023Publication date: February 15, 2024Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Shan E. GAW, Jay M. MIAZGA, Shannon E. EUBANKS
-
Publication number: 20240041369Abstract: An apparatus includes a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing defines an inner volume and has an inlet port that can be fluidically coupled to a patient and an outlet port. The fluid reservoir is disposed in the inner volume to receive and isolate a first volume of a bodily-fluid. The flow control mechanism is rotatable in the housing from a first configuration, in which a first lumen places the inlet port is in fluid communication with the fluid reservoir, and a second configuration, in which a second lumen places the inlet port in fluid communication with the outlet port. The actuator is configured to create a negative pressure in the fluid reservoir and is configured to rotate the flow control mechanism from the first configuration to the second configuration after the first volume of bodily-fluid is received in the fluid reservoir.Type: ApplicationFiled: October 18, 2023Publication date: February 8, 2024Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Jay M. MIAZGA, Shan E. GAW
-
Publication number: 20240041370Abstract: A bodily-fluid transfer device includes a housing, a pre-sample reservoir, and an actuator. The housing defines an inner volume between a substantially open proximal end portion and a distal end portion that includes a port couplable to a lumen-defining device. The pre-sample reservoir is fluidically couplable to the port to receive a first volume of bodily fluid. The actuator is at least partially disposed in the inner volume and has a proximal end portion that includes an engagement portion and a distal end portion that includes a sealing member. The engagement portion is configured to allow a user to selectively move the actuator between a first configuration such that bodily fluid can flow from the port to the pre-sample reservoir, and a second configuration such that bodily fluid can flow from the port to a sample reservoir defined at least in part by the sealing member and the housing.Type: ApplicationFiled: October 16, 2023Publication date: February 8, 2024Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
-
Patent number: 11890452Abstract: An apparatus includes a cannula assembly, a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing includes an inlet port removably coupled to the cannula assembly and defines an inner volume. The fluid reservoir is fluidically coupled to the housing and configured to receive and isolate a volume of bodily fluid from a patient. The flow control mechanism is at least partially disposed in the inner volume. The actuator is operably coupled to the flow control mechanism and is configured to move the flow control mechanism between a first configuration, in which bodily fluid can flow, via a fluid flow path defined by the flow control mechanism, from the cannula assembly, through the inlet port and into the fluid reservoir, to a second configuration, in which the fluid reservoir is fluidically isolated from the cannula assembly.Type: GrantFiled: February 12, 2020Date of Patent: February 6, 2024Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Richard G. Patton, Shan E. Gaw
-
Publication number: 20240008780Abstract: An apparatus includes a pre-sample reservoir, a diversion mechanism, and a flow metering mechanism. The diversion mechanism has an inlet port couplable to a lumen-defining device to receive bodily-fluids from a patient, a first outlet port fluidically couplable to the pre-sample reservoir, and a second outlet port fluidically couplable to a sample reservoir. The diversion mechanism defines a first fluid flow path and a second flow path that are configured to place the first outlet port and the second outlet port, respectively, in fluid communication with the inlet port. The flow metering mechanism is configured to meter a flow of a predetermined volume of bodily-fluid through the first fluid flow path into the pre-sample reservoir, to meter a flow of a second volume of bodily-fluid through the second fluid flow path into the sample reservoir, and to display a volumetric indicator associated with the predetermined volume and the second volume.Type: ApplicationFiled: July 12, 2023Publication date: January 11, 2024Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
-
Patent number: 11857321Abstract: An apparatus for procuring bodily fluid samples with reduced contamination includes a housing having a sequestration chamber, an inlet, and an outlet. A flow controller defines a portion of the sequestration chamber and can transition—in response to a suction force exerted by a fluid collection device fluidically coupled to the outlet—from a first state in which the sequestration chamber has a first volume to a second state in which the sequestration chamber has a second volume greater than the first volume, to draw an initial volume of bodily fluid into the sequestration chamber. An actuator is coupled to the housing and is in fluid communication with the inlet and the sequestration chamber in a first configuration, and is transitioned to a second configuration to sequester the sequestration chamber from the inlet, and allow a subsequent volume of bodily fluid to flow from the inlet to the outlet.Type: GrantFiled: March 11, 2020Date of Patent: January 2, 2024Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Jay M. Miazga, Timothy F. Ramsey, Abigail Patterson
-
Publication number: 20230417746Abstract: A system includes a fluid transfer device and a lateral flow assay device. The fluid transfer device has an inlet fluidically coupleable to a bodily fluid source, an outlet fluidically coupleable to a sample reservoir, and a sequestration chamber configured to receive an initial volume of bodily fluid. The fluid transfer device can be transitioned between (1) a first state with the sequestration chamber in fluid communication with the inlet to receive the initial volume, (2) a second state with the outlet in fluid communication with the inlet to receive a subsequent flow of bodily fluid, and (3) a third state with the lateral flow assay device in fluid communication with the sequestration chamber to receive a portion of the initial volume of bodily fluid. The lateral flow assay device configured to provide an indication associated with a presence of a target analyte in the bodily fluid.Type: ApplicationFiled: September 7, 2023Publication date: December 28, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Paul E. GOLDENBAUM, Dylan GUELIG
-
Patent number: 11819329Abstract: An apparatus includes a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing defines an inner volume and has an inlet port that can be fluidically coupled to a patient and an outlet port. The fluid reservoir is disposed in the inner volume to receive and isolate a first volume of a bodily-fluid. The flow control mechanism is rotatable in the housing from a first configuration, in which a first lumen places the inlet port is in fluid communication with the fluid reservoir, and a second configuration, in which a second lumen places the inlet port in fluid communication with the outlet port. The actuator is configured to create a negative pressure in the fluid reservoir and is configured to rotate the flow control mechanism from the first configuration to the second configuration after the first volume of bodily-fluid is received in the fluid reservoir.Type: GrantFiled: December 30, 2020Date of Patent: November 21, 2023Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Richard G. Patton, Jay M. Miazga, Shan E. Gaw
-
Publication number: 20230363674Abstract: An apparatus includes a housing, a flow control mechanism, and an actuator. At least a portion of the flow control mechanism is movably disposed within the housing. The apparatus further includes an inlet port and an outlet port, and defines a fluid reservoir. The outlet port is fluidically coupled to a second fluid reservoir and is fluidically isolated from the first fluid reservoir. The actuator is configured to move the flow control mechanism between a first configuration, in which the inlet port is placed in fluid communication with the fluid reservoir such that the fluid reservoir receives a first flow of bodily-fluid, and a second configuration, in which the inlet port is placed in fluid communication with the outlet port.Type: ApplicationFiled: July 27, 2023Publication date: November 16, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Jay M. MIAZGA, Shan E. GAW
-
Patent number: 11789017Abstract: A system includes a fluid transfer device and a lateral flow assay device. The fluid transfer device has an inlet fluidically coupleable to a bodily fluid source, an outlet fluidically coupleable to a sample reservoir, and a sequestration chamber configured to receive an initial volume of bodily fluid. The fluid transfer device can be transitioned between (1) a first state with the sequestration chamber in fluid communication with the inlet to receive the initial volume, (2) a second state with the outlet in fluid communication with the inlet to receive a subsequent flow of bodily fluid, and (3) a third state with the lateral flow assay device in fluid communication with the sequestration chamber to receive a portion of the initial volume of bodily fluid. The lateral flow assay device configured to provide an indication associated with a presence of a target analyte in the bodily fluid.Type: GrantFiled: December 11, 2020Date of Patent: October 17, 2023Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Jay M. Miazga, Shan E. Gaw, Paul Goldenbaum, Dylan Guelig
-
Patent number: 11786155Abstract: An apparatus includes a housing that defines a fluid reservoir and includes a port that is in fluid communication with the fluid reservoir. An inlet adapter is removably coupleable to the housing. A user can engage an actuator to move a plunger from a first position in which the fluid reservoir has a first volume, to a second position in which the fluid reservoir has a second volume greater than the first volume, which draws bodily fluid into the fluid reservoir via the inlet adapter. The actuator modulates a plunger rate of motion below a threshold as the plunger is moved. When a predetermined volume of bodily fluid is transferred into the fluid reservoir, a volume indicator transitions from a first state to a second state and the inlet adapter can then be removed to transfer the predetermined volume into a sample bottle external to the housing via the port.Type: GrantFiled: February 7, 2020Date of Patent: October 17, 2023Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Jeff Allison, Brian Shay, Joshua D. Maruska, John Andrew Johnson, Shan E. Gaw
-
Publication number: 20230320702Abstract: An apparatus includes a transfer adapter, a puncture member, a disinfection member, and a fluid reservoir. The transfer adapter has a proximal end portion and a distal end portion, and defines an inner volume configured to receive the puncture member. The transfer adapter is coupled to the disinfection member. The distal end portion of the transfer adapter includes a port fluidically coupled to the puncture member and configured to be placed in fluid communication with a bodily-fluid of a patient. The proximal end portion is configured to receive a portion of the fluid reservoir to allow the fluid reservoir to be moved within the inner volume between a first position, in which a surface of the fluid reservoir is placed in contact with the disinfection member, and a second position, in which the puncture member punctures the surface to place the puncture member in fluid communication with the fluid reservoir.Type: ApplicationFiled: January 26, 2023Publication date: October 12, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
-
Patent number: 11737693Abstract: An apparatus includes a pre-sample reservoir, a diversion mechanism, and a flow metering mechanism. The diversion mechanism has an inlet port couplable to a lumen-defining device to receive bodily-fluids from a patient, a first outlet port fluidically couplable to the pre-sample reservoir, and a second outlet port fluidically couplable to a sample reservoir. The diversion mechanism defines a first fluid flow path and a second flow path that are configured to place the first outlet port and the second outlet port, respectively, in fluid communication with the inlet port. The flow metering mechanism is configured to meter a flow of a predetermined volume of bodily-fluid through the first fluid flow path into the pre-sample reservoir, to meter a flow of a second volume of bodily-fluid through the second fluid flow path into the sample reservoir, and to display a volumetric indicator associated with the predetermined volume and the second volume.Type: GrantFiled: July 21, 2020Date of Patent: August 29, 2023Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Richard G. Patton, Shan E. Gaw
-
Publication number: 20230248281Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.Type: ApplicationFiled: April 12, 2023Publication date: August 10, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY
-
Publication number: 20230240571Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.Type: ApplicationFiled: April 3, 2023Publication date: August 3, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY
-
Publication number: 20230190157Abstract: A fluid control device includes an inlet configured to be placed in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has sequestration portion that can be vented or evacuated. The fluid control device has a first state in which an initial volume of bodily fluid can flow from the inlet to the sequestration portion and a second state in which (1) the initial volume is sequestered in the sequestration portion, and (2) a subsequent volume of bodily fluid, being substantially free of contaminants, can flow through at least a portion of the fluid control device and into the fluid collection device. The fluid control device can transition automatically or in response to an actuation of a portion of the fluid control device after the sequestration portion receives the initial volume.Type: ApplicationFiled: July 20, 2022Publication date: June 22, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY, Julie A. Schnur
-
Publication number: 20230172502Abstract: An apparatus includes a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing defines an inner volume and has an inlet port that can be fluidically coupled to a patient and an outlet port. The fluid reservoir is disposed in the inner volume to receive and isolate a first volume of a bodily-fluid. The flow control mechanism is rotatable in the housing from a first configuration, in which a first lumen places the inlet port is in fluid communication with the fluid reservoir, and a second configuration, in which a second lumen places the inlet port in fluid communication with the outlet port. The actuator is configured to create a negative pressure in the fluid reservoir and is configured to rotate the flow control mechanism from the first configuration to the second configuration after the first volume of bodily-fluid is received in the fluid reservoir.Type: ApplicationFiled: July 13, 2022Publication date: June 8, 2023Applicant: Magnolia Medical Technologies, Inc.Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Jay M. MIAZGA, Shan E. GAW
-
Patent number: 11660030Abstract: A syringe-based device includes a housing, a pre-sample reservoir, and an actuator. The housing defines an inner volume between a substantially open proximal end portion and a distal end portion that includes a port couplable to a lumen-defining device. The pre-sample reservoir is fluidically couplable to the port to receive and isolate a first volume of bodily fluid. The actuator is at least partially disposed in the inner volume and has a proximal end portion that includes an engagement portion and a distal end portion that includes a sealing member. The engagement portion is configured to allow a user to selectively move the actuator between a first configuration such that bodily fluid can flow from the port to the pre-sample reservoir, and a second configuration such that bodily fluid can flow from the port to a sample reservoir defined at least in part by the sealing member and the housing.Type: GrantFiled: March 31, 2022Date of Patent: May 30, 2023Assignee: Magnolia Medical Technologies, Inc.Inventors: Gregory J. Bullington, Richard G. Patton, Shan E. Gaw