Patents by Inventor Gregory J. Del Corso

Gregory J. Del Corso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10704125
    Abstract: A method of making a small diameter elongated steel article such as wire or strip is disclosed. The method includes the step of melting a steel alloy having the following weight percent composition C 0.88-1.00 Mn 0.20-0.80 Si 0.50 max. P 0.050 max. S 0.010-0.100 Cr 0.15-0.90 Ni 0.10-0.50 Mo 0.25 max. Cu 0.08-0.23 V 0.025-0.15? N 0.060 max. O 0.040 max. and the balance is iron and usual impurities. The method includes melting the alloy, atomizing the molten alloy to make a pre-alloyed metal powder, consolidating the metal powder to substantially full density, and then hot working the consolidated metal powder to form an intermediate elongated article. The method further includes a multi-step heat treating process. A small diameter, elongated steel article having enhanced machinability is also disclosed.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 7, 2020
    Assignee: CRS HOLDINGS, INC.
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso, Alberto Polar-Rosas
  • Publication number: 20170130306
    Abstract: A method of making a small diameter elongated steel article such as wire or strip is disclosed. The method includes the step of melting a steel alloy having the following weight percent composition. C 0.88-1.00 Mn 0.20-0.80 Si 0.50 max. P 0.050 max. S 0.010-0.100 Cr 0.15-0.90 Ni 0.10-0.50 Mo 0.25 max. Cu 0.08-0.23 V 0.025-0.15? N 0.060 max. O 0.040 max. and the balance is iron and usual impurities. The method includes melting the alloy, atomizing the molten alloy to make a pre-alloyed metal powder, consolidating the metal powder to substantially full density, and then hot working the consolidated metal powder to form an intermediate elongated article. The method further includes a multi-step heat treating process. A small diameter, elongated steel article having enhanced machinability is also disclosed.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 11, 2017
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso, Alberto Polar-Rosas
  • Patent number: 9267192
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: February 23, 2016
    Assignee: CRS HOLDINGS, INC.
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Patent number: 8795584
    Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: August 5, 2014
    Assignee: CRS Holdings, Inc.
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso
  • Publication number: 20130047786
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Patent number: 8282701
    Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: October 9, 2012
    Assignee: CRS Holdings, Inc.
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso
  • Publication number: 20100068547
    Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 18, 2010
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso
  • Publication number: 20040105774
    Abstract: A process for preparing a Ni, Fe and Co base superalloy ingot for hot working and an ingot assembly made by the process are disclosed. The process includes the steps of providing a cast ingot and inserting the ingot into a steel canister that is dimensioned to wholly contain said ingot. The ingot is positioned within the steel canister so as to provide a space between the ingot and the steel canister. After the ingot is positioned in the steel canister, metal powder is filled into the space. The metal powder is selected to readily bond with the surfaces of said ingot and the steel canister. The steel canister is then closed with the ingot and the metal powder inside. Gas and moisture are removed from the interior of the steel canister. The steel canister with the ingot and the metal powder inside is hot isostatically pressed to form an ingot assembly having a cladding formed about the entire longitudinal and end surfaces of the ingot.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Inventors: Gregory J. Del Corso, E. Lance Buck, Mohamed K. Mohamdein
  • Patent number: 6482354
    Abstract: A tool steel alloy having a unique combination of hardness and toughness is disclosed. The alloy contains, in weight percent, about: wt. % C 1.85-2.30, Mn 0.15-1.0, Si 0.15-1.0, P 0.030 max., S 0-0.30, Cr 3.7-5.0, Ni+Cu 0.75 max., Mo 1.0 max., Co 6-12, W 12.0-13.5, V 4.5-7.5. The balance is essentially iron and usual impurities. The elements C, Cr, Mo, W, and V are balanced in this alloy such that −0.05≦&Dgr;C≦−0.42 where &Dgr;C=((0.033W)+(0.063Mo)+(0.06Cr)+(0.2V))−C. A powder metallurgy tool steel article made from consolidated alloy powder having the aforesaid weight percent composition provides a Rockwell C hardness of at least about 69.5 when heat treated.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: November 19, 2002
    Assignee: CRS Holdings, Inc.
    Inventors: David E. Wert, Gregory J. Del Corso, Harrison A. Garner, Jr.
  • Patent number: 6238455
    Abstract: A powder metallurgy article formed of a sulfur-containing, precipitation-hardenable, stainless steel alloy is described. The article has a unique combination of strength, ductility, processability, and machinability. The powder metallurgy article is formed of a stainless steel alloy having the following composition in weight percent. C 0.03 max. Mn 1.0 max. Si 0.75 max. P 0.040 max. S 0.010-0.050 Cr 10-14 Ni 6-12 Ti 0.4-2.5 Mo 6 max. B 0.010 max. Cu 4 max. Co 9 max. Nb 1 max. Al 1 max. Ta 2.5 max. N 0.03 max. The balance of the alloy is iron and the usual impurities. The powder metallurgy article according to this invention is characterized by a fine dispersions of titanium sulfides that are not greater than about 5 &mgr;m in major dimension. A method of preparing the powder metallurgy article is also described.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: May 29, 2001
    Assignee: CRS Holdings, Inc.
    Inventors: Robert S. Brown, Gregory J. Del Corso, Theodore Kosa, James W. Martin
  • Patent number: 5462575
    Abstract: A powder metallurgy article formed from a Co--Cr--Mo alloy powder and a method for making the article are disclosed. The Co--Cr--Mo alloy powder contains, in weight percent, about 0.35% max. C, about 1.00% max. Mn, about 1.00% max. Si, about 26.0-30.0% Cr, about 5.0-7.0% Mo, about 3% max. Ni, about 0.25% max. N, about 1.00% max. Fe, about 0.01% max. of oxide forming metals, and the balance is essentially Co. Within their respective weight percent limits C and N are controlled such that they satisfy the relationship:62.866+360.93.times.(%C)+286.633.times.(%N)-682.165.times.(%C).sup.2 -641.702.times.(%N).sup.2 .gtoreq.120.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: October 31, 1995
    Assignee: CRS Holding, Inc.
    Inventor: Gregory J. Del Corso
  • Patent number: 5049184
    Abstract: In a process for making a low thermal expansion, high thermal conductivity member or article suitable for bonding to a support member at a predetermined bonding temperature and for facilitating heat transfer therefrom, and in the member made thereby, first and second metal powders are combined in volumetric proportions to provide an approximation to desired thermal expansion and thermal conductivity characteristics. The powder mixture is then consolidated in a controlled manner to provide a shaped member having a thermal expansion characteristic curve that essentially matches that of the support member from about 30.degree. C. up to the bonding temperature. Consolidation of the metal powder mixture is controlled by selecting a density for the consolidated powder that results in the close expansion match over the temperature range and then consolidating the metal powder mixture to that density.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: September 17, 1991
    Assignee: Carpenter Technology Corporation
    Inventors: Leslie L. Harner, Gregory J. Del Corso
  • Patent number: 5017437
    Abstract: A process for making a clad article of a densified metal powder core and a compatible metal cladding metallurgically bonded thereto results in a significantly reduced concentration of metal oxides in the core so as to prevent embrittlement of the core at and adjacent the core/cladding interface that results in rupture between the core and the cladding along the interface during working or forming. In carrying out the process, the temperature of the undensified metal powder and/or the temperature of the compatible metal container into which the metal powder is filled are closely controlled so as to avoid adsorption of moisture during the filling step.
    Type: Grant
    Filed: July 20, 1990
    Date of Patent: May 21, 1991
    Assignee: Carpenter Technology Corporation
    Inventors: James W. Martin, Robert S. Brown, E. Lance Buck, Gregory J. Del Corso
  • Patent number: 4891080
    Abstract: A workable, boron-containing, stainless steel alloy and an article formed therefrom are disclosed together with a process for manufacturing same. The alloy consists essentially of, in weight percent, about______________________________________ w/o ______________________________________ Carbon 0.10 max. Manganese 2.00 max. Silicon 1.00 max. Phosphorus 0.045 max. Sulfur 0.010 max. Chromium 16.00-22.00 Nickel 10.00-15.00 Molybdenum 0-3.0 Boron 0.2-2.0 Nitrogen 0.075 max. ______________________________________and the balance consisting essentially of iron. The as-worked alloy in accordance with the invention is characterized by having a boride particle areal density per weight percent boron (A.sub.N) defined by the relationshipA.sub.N .gtoreq.58,080-18,130 (%B).The as-worked alloy of the invention is further characterized by having a Charpy V-notch impact strength (CVN) defined by the relationshipCVN.gtoreq.85.917 x e.sup.-1.20297(%B).
    Type: Grant
    Filed: June 6, 1988
    Date of Patent: January 2, 1990
    Assignee: Carpenter Technology Corporation
    Inventors: Gregory J. Del Corso, James W. Martin, David L. Strobel
  • Patent number: 4743512
    Abstract: A method of manufacturing a flat form from blended metallic powder including a major constituent by weight having a high melting point and a minor constituent by weiht having a substantially lower melting point includes selection of the powder to provide continuous and reproducible compacted flat forms. Powder is selected on the basis of compressibility and flowability. The selected powder is compacted to a flat green form and then liquid phase sintered. The flat form may be stacked to provide a flat article of a desired thickness which will result in a monolithic or composite cross section when subsequently sintered. Liquid phase sintering is carried out in a manner designed to avoid undesirable embrittlement and to provide a uniform microstructure in the fully consolidated article. The process is especially useful in the production of tungsten heavy alloy plate.
    Type: Grant
    Filed: June 30, 1987
    Date of Patent: May 10, 1988
    Assignee: Carpenter Technology Corporation
    Inventors: David T. Marlowe, Gregory J. Del Corso, Robert E. Carnes, David Esposito, William J. Burns, II, Edward F. Holland, David L. Strobel
  • Patent number: 4693863
    Abstract: A powder metallurgy consolidation process and apparatus for carrying out said process produces integral metal bodies by heating metal powder of a predetermined composition to a temperature sufficient to cause solid state interparticle bonding, while simultaneously maintaining a reactive fluid in contact with the metal powder. The metal powder is compacted to a density greater than 90% of the full theoretical density of the composition after the reactive fluid has been removed. The reactive fluid is selected to modify the powder particle surface chemistry in order to improve bondability and to obtain other properties as desired. Metal bodies which have been consolidated by the process are sufficiently dense to be mechanically hot worked and exhibit exceptionally low retained gas content.
    Type: Grant
    Filed: April 9, 1986
    Date of Patent: September 15, 1987
    Assignee: Carpenter Technology Corporation
    Inventors: Gregory J. Del Corso, Robert E. Carnes, David Esposito
  • Patent number: 3988084
    Abstract: A nozzle assembly for atomizing a stream of molten metal includes a refractory metal-transmitting nozzle having a short metering orifice at its entrance end and a relatively long divergent discharge passage terminating at a flat annular land formed at the bottom end of the metal-transmitting nozzle. The metal-transmitting nozzle is seated in an opening in the bottom of a tundish or other source of molten metal with its upper end containing its metering orifice projecting into the molten metal reservoir. The lower-end portion projects from the bottom of the tundish and through the central portion of an atomizing fluid nozzle assembly in which it seats. The central portion of the atomizing fluid nozzle assembly projects below the bottom member of the atomizing fluid nozzle assembly and forms an atomizing fluid orifice therewith.
    Type: Grant
    Filed: November 11, 1974
    Date of Patent: October 26, 1976
    Assignee: Carpenter Technology Corporation
    Inventors: David Esposito, Raymond A. Reiter, Gregory J. Del Corso