Patents by Inventor Gregory J. Haubrich

Gregory J. Haubrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8497804
    Abstract: An antenna structure for an implantable medical device (IMD) is provided including a lower dielectric biocompatible antenna portion positioned on a body side of the structure and a high dielectric portion including at least one dielectric substrate having a high dielectric constant positioned on a device side of the structure. The biocompatible antenna portion is derived from an antenna layer, a biocompatible surface layer, and at least one layer of biocompatible dielectric material (e.g., high temperature cofire ceramic (HTCC) material) that provides a matching gradient between the antenna and the surrounding environment. The high dielectric portion may include at least one layer of low temperature cofire ceramic (LTCC) material. The high dielectric portion may be bonded to the biocompatible antenna portion or cofired with the biocompatible antenna portion to form a single bilayer monolithic antenna structure having a lower dielectric HTCC biocompatible antenna portion and a high dielectric LTCC portion.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: July 30, 2013
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Joyce K. Yamamoto, Duane N. Mateychuk
  • Publication number: 20130132855
    Abstract: A system with a medical device, an interface device and a communication controller. A medical device has a medical device communication module. The interface device has an interface device communication module and a user interface operatively coupled to the interface device communication module and configured to communicate with a user of the system. The communication controller has a communication controller module configured to communicate with the medical device communication module and with the interface device communication module and an information server operatively coupled to the communication controller module and configured to drive the user interface of the interface device. The system is configured so that a user of the system may communicate with the medical device using the user interface of the interface device with the user interface of the interface being driven by the information server of the communication module.
    Type: Application
    Filed: December 23, 2011
    Publication date: May 23, 2013
    Inventors: Yatheendhar D. Manicka, Javaid Masoud, Charles L. Dennis, II, Gregory J. Haubrich, Mark A. Maass, John W. Komp, Christopher M. Petersen
  • Patent number: 8428722
    Abstract: A communications device facilitates communication between a medical device and a wireless communications network and comprises a telemetry circuit configured to wirelessly communicate with one or more medical devices, and a computer network communication interface configured to wirelessly communicate directly with a wireless computer network. The communications device also comprises a peripheral device communication interface configured to communicate with a wireless peripheral device and a processor being in operable communication with, and configured to control operations of, the telemetry circuit, the network communication interface, and the peripheral device communication interface.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 23, 2013
    Assignee: Medtronic, Inc.
    Inventors: William D. Verhoef, Gregory J. Haubrich, Javaid Masoud, Len D. Twetan
  • Patent number: 8374700
    Abstract: An implantable medical device with a medical module, an antenna, a transceiver and an impedance match circuit. The transceiver is operatively coupled to the antenna and the medical module and facilitates wireless transmission of data between the medical module and an external device. The impedance match circuit is operatively coupled between the transceiver and the antenna and has a plurality of predetermined selectable configurations, each providing a particular impedance matching characteristic.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Robert S. Wentink
  • Patent number: 8280521
    Abstract: Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: October 2, 2012
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Len D. Twetan, David Peichel, Charles H. Dudding, George C. Rosar, Quentin S. Denzene
  • Publication number: 20120166680
    Abstract: System and method for interfacing with a medical device having a host device and a communication module. The host device has a user interface configured to input and display information relating to the interfacing with the medical device. The communication module is locally coupled to the host device and configured to communicate wirelessly with the medical device. The system, implemented by the host device and the communication module, is configured to communicate with the medical device with functions. The system, implemented by at least one of the host device and the communication module, has a security condition. At least one of the functions is disabled, at least in part, from operating on the system based upon the security condition.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Inventors: Javaid Masoud, William D. Verhoef, Gregory J. Haubrich, Christopher M. Petersen
  • Publication number: 20120163663
    Abstract: System and method for interfacing with a medical device. The system has a host device and a communication module. The host device has a user interface configured to input and display information relating to the interfacing with the medical device. The communication module is locally coupled to the host device and configured to communicate wirelessly with the medical device. The system, implemented by the host device and the communication module, is configured to communicate with the medical device with functions. The system, implemented by at least one of the host device and the communication module, has validation layers configured for use by users, each of the users having access to at least one of the validation layers based on a validation condition, each individual one of the functions being operational through the user interface only with one of the validation layers.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Inventors: Javaid Masoud, Gregory J. Haubrich, William D. Verhoef, Bo Zhang, Christopher M. Petersen
  • Publication number: 20120165619
    Abstract: System and method for providing medical information concerning a patient having first patient physiological data and second patient physiological data. The system has a medical device and a handheld device. The medical device is configured to be implanted in the patient and has a sensor configured to obtain the first patient physiological data and a communication module. The handheld device has a communication module, a processor and a user interface. The device communication module is configured to communicate with the medical device communication module, the device communication module being configured to transfer the first patient physiological data to the handheld device via the communication module. The processor is configured to combine the first patient physiological data and the second patient physiological data and generate feedback having a recommended course of action based, at least in part, on the first patient physiological data and the second patient physiological data.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Inventors: Javaid Masoud, William D. Verhoef, Mark A. Maass, Bo Zhang, Christopher M. Petersen, Gregory J. Haubrich
  • Patent number: 8185210
    Abstract: Medical data is communicated from a transmitter of an external unit to a receiver of an implantable medical device. The transmitter generates a preamble signal having encoded configuration data that informs the receiver of configuration settings to be used in receiving the medical data. The receiver detects the preamble and validates a modulation pattern of the preamble. Configuration data is decoded from the preamble signal and the receiver configuration is adjusted to receive the medical data.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: May 22, 2012
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Javaid Masoud, George C. Rosar, Glenn O. Spital, Quentin S. Denzene
  • Patent number: 8160707
    Abstract: An implantable medical device is provided including a housing, an external circuit element extending outwardly from the housing, an internal circuit enclosed by the housing, a feedthrough array disposed along the housing having at least one filtered feedthrough and at least one unfiltered feedthrough, wherein the unfiltered feedthrough is adapted for connection to the outwardly extending circuit element; and including means for minimizing electromagnetic coupling between the filtered feedthrough and the unfiltered feedthrough.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: April 17, 2012
    Assignee: Medtronic, Inc.
    Inventors: Rajesh V. Iyer, Daniel J. Koch, Simon E. Goldman, Shawn D. Knowles, William J. Taylor, Joyce K. Yamamoto, Gregory J. Haubrich, Michael Nowak, David Nghiem, Roger L. Hubing, Len D. Twetan
  • Publication number: 20120034896
    Abstract: Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Inventors: Gregory J. HAUBRICH, Len D. TWETAN, David PEICHEL, Charles H. DUDDING, George C. ROSAR, Quentin S. DENZENE
  • Publication number: 20120026009
    Abstract: Medical devices are provided with multi-element antenna systems that may function to automatically tune the antenna as a function of the operating environment of the medical device. The tuning methodology may incorporate a multi-element antenna having a variable capacitive element on a first of the antenna elements with that antenna element being driven by a second of the antenna elements. In an embodiment, a multi-element antenna system may acquire measurements of predefined criteria and the antenna may be tuned as a function of the measured criteria to optimize operation of the antenna in both reception and transmission of signals. In so doing the antenna impedance can be matched to the transmission line impedance.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Inventors: Yanzhu Zhao, Gregory J. Haubrich, Quentin S. Denzene
  • Patent number: 8102789
    Abstract: Constituents of a network of medical devices communicate according to a synchronous communication protocol. A constituent of the network is established as a conductor. Time slots are assigned to each constituent of the network other than the conductor. Information is communicated between the constituents of the network in the assigned time slots.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: January 24, 2012
    Assignee: Medtronic, Inc.
    Inventors: George C. Rosar, Gregory J. Haubrich, Javaid Masoud, Charles S. Farlow
  • Patent number: 8065018
    Abstract: Unscheduled wireless communication with a medical device is achieved by operating a receiver of the medical device in a series of modes. Each mode provides an increasingly selective evaluation of received RF energy. The receiver, when operating in a first mode, is capable of detecting the presence of RF energy transmitted from a communicating device. The receiver, when operating in a second mode, consumes more energy than the first mode and analyzes the RF energy to determine whether it contains the appropriate type of modulation. When operating in a third mode, the receiver consumes more energy than the second mode, and operates the full receiver to begin communication with the communicating device. The receiver opens a communication session after the RF energy has passed the evaluation by the series of modes to receive an unscheduled communication.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: November 22, 2011
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Len D. Twetan, David Peichel, Charles H. Dudding, George C. Rosar, Quentin S. Denzene
  • Publication number: 20110270362
    Abstract: An implantable lead for use with a medical device (IMD) includes active circuits incorporated into the lead to reduce the creation of an induced current, or dissipate the induced current and heat created due to an induced current in the lead. The active circuits are powered by the magnetic resonant imaging energy or interfering magnetic or electrical fields. According to various embodiments, the lead and/or its components can be provided to reduce or dissipate a current and heat induced by various external magnetic or electrical fields.
    Type: Application
    Filed: September 17, 2010
    Publication date: November 3, 2011
    Inventors: Steven D. Goedeke, Gregory J. Haubrich, John D. Wahlstrand
  • Publication number: 20100249887
    Abstract: A communications device facilitates communication between a medical device and a wireless communications network and comprises a telemetry circuit configured to wirelessly communicate with one or more medical devices, and a computer network communication interface configured to wirelessly communicate directly with a wireless computer network. The communications device also comprises a peripheral device communication interface configured to communicate with a wireless peripheral device and a processor being in operable communication with, and configured to control operations of, the telemetry circuit, the network communication interface, and the peripheral device communication interface.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 30, 2010
    Inventors: William D. Verhoef, Gregory J. Haubrich, Javaid Masoud, Len D. Twetan
  • Patent number: 7761164
    Abstract: A communications device facilitates communication between a medical device and a wireless communications network and comprises a telemetry circuit configured to wirelessly communicate with one or more medical devices, and a computer network communication interface configured to wirelessly communicate directly with a wireless computer network. The communications device also comprises a peripheral device communication interface configured to communicate with a wireless peripheral device and a processor being in operable communication with, and configured to control operations of, the telemetry circuit, the network communication interface, and the peripheral device communication interface.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: July 20, 2010
    Assignee: Medtronic, Inc.
    Inventors: William D. Verhoef, Gregory J. Haubrich, Javaid Masoud, Len D. Twetan
  • Publication number: 20100168818
    Abstract: An implantable medical device (“IMD”) is provided having an antenna and an RF telemetry module for far field telemetry communications arranged on an exterior of the IMD housing, such that telemetry signal processing may be performed on the exterior of the housing. One or more feedthrough conductive paths extend through the housing to communicatively couple the RF module to circuitry within the housing. In this manner RF module is arranged entirely external to the housing, such that only power and/or low frequency data bit signals are required to be passed through the feedthrough conductive path. This allows the feedthrough conductive path to be filtered to prevent undesired interference signals (e.g., electromagnetic interference (EMI) signals) from entering the housing through the feedthrough conductive path coupled to the RF module. In some embodiments, the antenna and RF module are formed in an integrated assembly attachable to an exterior portion of the housing.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Michael William Barror, William D. Verhoef, Joyce K. Yamamoto, Robert S. Wentink, Gregory J. Haubrich
  • Publication number: 20100109958
    Abstract: An antenna structure for an implantable medical device (IMD) is provided including a lower dielectric biocompatible antenna portion positioned on a body side of the structure and a high dielectric portion including at least one dielectric substrate having a high dielectric constant positioned on a device side of the structure. The biocompatible antenna portion is derived from an antenna layer, a biocompatible surface layer, and at least one layer of biocompatible dielectric material (e.g., high temperature cofire ceramic (HTCC) material) that provides a matching gradient between the antenna and the surrounding environment. The high dielectric portion may include at least one layer of low temperature cofire ceramic (LTCC) material. The high dielectric portion may be bonded to the biocompatible antenna portion or cofired with the biocompatible antenna portion to form a single bilayer monolithic antenna structure having a lower dielectric HTCC biocompatible antenna portion and a high dielectric LTCC portion.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 6, 2010
    Inventors: Gregory J. Haubrich, Joyce K. Yamamoto, Duane N. Mateychuk
  • Patent number: 7672731
    Abstract: An implantable device, such as an implantable medical device (IMD) includes at least two radio frequency (RF) antennas and may additionally include an RF communication circuit. The RF antennas are spatially diverse, are disposed adjacent a housing, and are each configured to receive RF signals transmitted to the IMD from a remote RF signal source. The RF communication circuit, if included, is disposed within the housing and is configured to selectively receive the RF signals received by one or more of the spatially diverse RF antennas.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Garry L. Dublin, Gregory J. Haubrich, Chris C. Fuller, Piotr Przybyszewski, Len D. Twetan, William D. Verhoef