Patents by Inventor Gregory J. Sherwood

Gregory J. Sherwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8725252
    Abstract: One embodiment includes a capacitor case sealed to retain electrolyte, at least one electrode disposed in the capacitor case, the at least one electrode comprising an overcurrent protector, a conductor coupled to the overcurrent protector and in electrical communication with a remainder of the electrode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case, a second electrode disposed in the capacitor case, a separator disposed between the electrode and the second electrode and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the second electrode, with the terminal and the second terminal electrically isolated from one another, wherein the overcurrent protector is to interrupt electrical communication between the terminal and the remainder of the electrode at a selected current level.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 13, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Patent number: 8619408
    Abstract: This document discusses capacitive elements including a first, second and third electrode arranged in a stack. The third electrode is positioned between the first and second electrode. An interconnect includes a unitary substrate shared with the first and second electrodes. The interconnect is adapted to deform to accommodate the stacked nature of the first and second electrodes. The unitary substrate includes a sintered material disposed thereon.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 31, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Jay E. Daley, Mary M. Byron, Eric Stemen, Peter Jay Kuhn
  • Patent number: 8503164
    Abstract: This document discusses capacitive elements including a first, second and third electrode arranged in a stack. The third electrode is positioned between the first and second electrode. An interconnect includes a unitary substrate shared with the first and second electrodes. The interconnect is adapted to deform to accommodate the stacked nature of the first and second electrodes. The unitary substrate includes a sintered material disposed thereon.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 6, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Jay E. Daley, Mary M. Byron, Eric Stemen, Peter Jay Kuhn
  • Patent number: 8465555
    Abstract: The present subject matter includes a method of producing an apparatus for use in a patient, the method including etching an anode foil, anodizing the anode foil, assembling the anode foil, at least one cathode foil and one or more separators into a capacitor stack adapted to deliver from about 5.3 joules per cubic centimeter of capacitor stack volume to about 6.3 joules per cubic centimeter of capacitor stack volume at a voltage of between about 465 volts to about 620 volts, inserting the stack into a capacitor case, inserting the capacitor case into a device housing adapted for implant in a patient, connecting the capacitor to a component and sealing the device housing.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Patent number: 8451587
    Abstract: A method includes connecting together one or more anode connection members of one or more anode foils and one or more cathode connection members of one or more cathode foils and electrically isolating the one or more anode foils from the one or more cathode foils. A capacitor stack includes a plurality of cathode layers having cathode connection members and a plurality of anode layers having anode connection members. The anode connection members are connected to the cathode connection members and configured such that the anode layers can be electrically separated from the cathode layers by cutting only the anode connection members or the cathode connection members.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: May 28, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Brian L. Schmidt, James M. Poplett, Brian V. Waytashek
  • Patent number: 8380302
    Abstract: An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include one or more MRI Safe components. In an example, the implantable device includes a capacitor including a first electrode including a first slot extending from a perimeter of the first electrode to an interior of the first electrode. A second electrode is separated from the first electrode by a first distance. The second electrode includes a second slot extending from a perimeter of the second electrode to an interior of the second electrode. The first and second slots are configured to at least partially segment surface areas of the first and second electrodes, respectively, to reduce a radial current loop size in each of the first and second electrodes.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Lisa B. Schmalhurst, Gregory J. Sherwood, Masoud Ameri, Yingbo Li
  • Publication number: 20130041420
    Abstract: An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a current collector formed of a framework defining cells extending to three axes, an anode conductor coupled to the current collector formed of a framework defining cells extending to three axes in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a cathode disposed in the capacitor case, a separator disposed between the cathode and the anode and a cathode terminal disposed on an exterior of the capacitor case and in electrical communication with the cathode, wherein the anode terminal and the cathode terminal are electrically isolated from one another.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 14, 2013
    Inventor: Gregory J. Sherwood
  • Patent number: 8229554
    Abstract: One embodiment includes an apparatus that includes an implantable device housing, a capacitor disposed in the implantable device housing, the capacitor including a dielectric comprising CaCu3Ti4O12 and BaTiO3, the dielectric insulating an anode from a cathode and pulse control electronics disposed in the implantable device housing and connected to the capacitor.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 24, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Publication number: 20120151725
    Abstract: The present subject matter includes a method of producing an apparatus for use in a patient, the method including etching an anode foil, anodizing the anode foil, assembling the anode foil, at least one cathode foil and one or more separators into a capacitor stack adapted to deliver from about 5.3 joules per cubic centimeter of capacitor stack volume to about 6.3 joules per cubic centimeter of capacitor stack volume at a voltage of between about 465 volts to about 620 volts, inserting the stack into a capacitor case, inserting the capacitor case into a device housing adapted for implant in a patient, connecting the capacitor to a component and sealing the device housing.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Inventor: Gregory J. Sherwood
  • Patent number: 8174818
    Abstract: The present subject matter includes a first capacitor stack including a first plurality of anode layers and a first plurality of cathode layers and a second capacitor stack including a second plurality of anode layers and a second plurality of cathode layers. In various embodiments, a flexible bus is welded to the first capacitor stack and to the second capacitor stack. The flexible bus is adapted to conduct electricity between the first capacitor stack and the second capacitor stack. Also, the present subject matter includes embodiments where the first capacitor stack and the second capacitor stack are disposed in a case filled with an electrolyte.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 8, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Patent number: 8170662
    Abstract: One aspect of this disclosure relates to an apparatus for providing a selective capacitance. An embodiment of the apparatus includes a first and second capacitor in a stack, and a switching circuit connected between the first and second capacitors. The switching circuit has at least two states, and is adapted to provide a first defibrillation capacitance in a first state and a second defibrillation capacitance in a second state. A switching circuit embodiment includes a field effect transistor (FET) adapted to have a source connected to the first capacitor and a drain connected to the second capacitor, a bipolar junction transistor (BJT) adapted to have an emitter connected to the source of the FET and a collector connected to a gate of the FET, a first current source connected to the collector of the BJT, and a second current source connected to a base of the BJT.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: May 1, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Bocek, Gregory J. Sherwood
  • Patent number: 8154853
    Abstract: One embodiment of the present subject matter includes a stack of substantially planar electrodes including at least a first and second anode layer, and a plurality of cathode layers, a case in which the stack is disposed and to which the plurality of cathode layers is connected, a first feedthrough disposed through the case and connected to the first anode and a second feedthrough disposed through the case and connected to the second anode, wherein a first capacitor including the first anode layer and a second capacitor including the second anode layer are electrically isolated.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: April 10, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Patent number: 8133286
    Abstract: The present subject matter includes a method of producing an apparatus for use in a patient, the method including etching an anode foil, anodizing the anode foil, assembling the anode foil, at least one cathode foil and one or more separators into a capacitor stack adapted to deliver from about 5.3 joules per cubic centimeter of capacitor stack volume to about 6.3 joules per cubic centimeter of capacitor stack volume at a voltage of between about 465 volts to about 620 volts, inserting the stack into a capacitor case, inserting the capacitor case into a device housing adapted for implant in a patient, connecting the capacitor to a component and sealing the device housing.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: March 13, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Publication number: 20110317370
    Abstract: One example includes a capacitor case sealed to retain electrolyte, electrolyte disposed in the capacitor case, a capacitor electrode disposed in the capacitor case, an electronic component mounted to the capacitor electrode and disposed in the capacitor case, the electronic component including two contacts, with a first contact mounted onto the capacitor electrode and with a second contact mounted onto a terminal disposed on an exterior of the capacitor case and sealingly extending through the capacitor case, the first and second contacts electrically isolated from one another, a additional capacitor electrode disposed in the capacitor case, a separator disposed between the capacitor electrode and the additional capacitor electrode and a additional terminal disposed on the exterior of the capacitor case and in electrical communication with the additional capacitor electrode, with the terminal and the additional terminal electrically isolated from one another.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 29, 2011
    Inventor: Gregory J. Sherwood
  • Publication number: 20110270336
    Abstract: One embodiment includes an apparatus that includes an implantable device housing, a capacitor disposed in the implantable device housing, the capacitor including a dielectric comprising CaCu3Ti4O12 and BaTiO3, the dielectric insulating an anode from a cathode and pulse control electronics disposed in the implantable device housing and connected to the capacitor.
    Type: Application
    Filed: July 7, 2011
    Publication date: November 3, 2011
    Inventor: Gregory J. Sherwood
  • Patent number: 8033202
    Abstract: A punch and die apparatus and a method and apparatus for punching a capacitor electrode layer. A method includes placing a capacitor material sheet between a punch and a die, the punch guided by a punch guide, there being no stripper plate between the punch guide and the die, and actuating the punch to punch an electrode layer out of the sheet. An apparatus includes a die having a die hole, a punch guide, and a punch located within the punch guide. The punch guide and the die have a fixed distance therebetween such that there is no compression on a work piece placed between the die and the punch before the punch contacts the workpiece.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 11, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James Rohl, Michael Rebrovich, Gregory J. Sherwood
  • Publication number: 20110230924
    Abstract: This disclosure relates to methods and apparatus for enhanced dielectric properties for electrolytic capacitors to store energy in an implantable medical device. One aspect of the present subject matter includes a method for manufacturing a capacitor adapted to be disposed in an implantable device housing. An embodiment of the method includes providing a dielectric comprising aluminum oxide and doping the aluminum oxide with an oxide having a dielectric constant greater than aluminum oxide. Doping the aluminum oxide includes using sol-gel based chemistry, electrodeposition or atomic layer deposition (ALD) in various embodiments.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 22, 2011
    Inventors: Gregory J. Sherwood, Michael J. Root, Mary M. Byron
  • Patent number: 8012222
    Abstract: The present subject matter includes a capacitor stack having a plurality of anode layers, and a plurality of cathodic metal substrates partially coated in a titanium coating. Cathode portions lacking titanium enable weld interconnections which are substantially free of titanium, improving capacitor properties. In some embodiments, anodes are interspersed among cathodes, and are electrically separated from the cathodes, with portions of cathode material attached to the welding area of the anode. These portions of the cathode material are no longer electrically connected to the cathode. As the anode and these cathode portions are welded and aged, leakage current is reduced due to improved oxide growth in the welding area due to the absence of titanium.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 6, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James M. Poplett, Jeannette C. Polkinghorne, Gregory J. Sherwood
  • Patent number: 8004288
    Abstract: The present subject matter provides apparatus and methods for testing high dielectric capacitors. A testing process whereby voltage and temperature is varied to provide temperature dependent plots to determine the reliability of a capacitor is provided. A testing system is demonstrated to measure capacitor reliability and/or relative capacitor reliability.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: August 23, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Francis Wang, Keith R. Maile, Ignacio Chi
  • Patent number: 7979120
    Abstract: One embodiment includes an apparatus that includes an implantable device housing, a capacitor disposed in the implantable device housing, the capacitor including a dielectric comprising CaCu3Ti4O12 and BaTiO3, the dielectric insulating an anode from a cathode and pulse control electronics disposed in the implantable device housing and connected to the capacitor.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: July 12, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood