Patents by Inventor Gregory J. Sommer

Gregory J. Sommer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10627366
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: April 21, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van De Vreugde
  • Patent number: 10384202
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 20, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Chung-Yan Koh, Ulrich Y. Schaff, Gregory J. Sommer
  • Publication number: 20190210015
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Application
    Filed: September 14, 2017
    Publication date: July 11, 2019
    Inventors: Chung-Yan Koh, Ulrich Y. Schaff, Gregory J. Sommer
  • Publication number: 20180065118
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 8, 2018
    Inventors: Chung-Yan Koh, Ulrich Y. Schaff, Gregory J. Sommer
  • Patent number: 9795961
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 24, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Chung-Yan Koh, Ulrich Y. Schaff, Gregory J. Sommer
  • Publication number: 20170122904
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Application
    Filed: January 16, 2017
    Publication date: May 4, 2017
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van De Vreugde
  • Patent number: 9579649
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: February 28, 2017
    Assignee: Sandia Corporation
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van de Vreugde
  • Patent number: 9409357
    Abstract: Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: August 9, 2016
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh
  • Patent number: 9304129
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: April 5, 2016
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Chung-Yan Koh, Gregory J. Sommer
  • Patent number: 9244065
    Abstract: Embodiments of the present invention include methods for conducting agglutination assays using sedimentation. Aggregates may be exposed to sedimentation forces and travel through a density medium to a detection area. Microfluidic devices, such as microfluidic disks, are described for conducting the agglutination assays, as are systems for conducting the assays.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 26, 2016
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Gregory J. Sommer, Anup K. Singh
  • Patent number: 9201069
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 1, 2015
    Assignee: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay Abhyankar
  • Patent number: 9186668
    Abstract: Embodiments of the present invention are directed toward microfluidic systems, apparatus, and methods for measuring a quantity of cells in a fluid. Examples include a differential white blood cell measurement using a centrifugal microfluidic system. A method may include introducing a fluid sample containing a quantity of cells into a microfluidic channel defined in part by a substrate. The quantity of cells may be transported toward a detection region defined in part by the substrate, wherein the detection region contains a density media, and wherein the density media has a density lower than a density of the cells and higher than a density of the fluid sample. The substrate may be spun such that at least a portion of the quantity of cells are transported through the density media. Signals may be detected from label moieties affixed to the cells.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: November 17, 2015
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Gregory J. Sommer, Anup K. Singh
  • Publication number: 20150125346
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Ulrich Y. Schaff, Chung-Yan Koh, Gregory J. Sommer
  • Patent number: 9005417
    Abstract: Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 14, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh
  • Patent number: 8962346
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: February 24, 2015
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Chung-Yan Koh, Gregory J. Sommer
  • Publication number: 20150038372
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 5, 2015
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8945914
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch
  • Patent number: 8871496
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 28, 2014
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Publication number: 20140178252
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay Abhyankar
  • Publication number: 20140154816
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
    Type: Application
    Filed: March 16, 2012
    Publication date: June 5, 2014
    Inventors: Ulrich Y. SCHAFF, Chung-Yan Koh, Gregory J. Sommer