Patents by Inventor Gregory J. Wideman

Gregory J. Wideman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230233644
    Abstract: Disclosed are soluble extractives prepared from non-woody plants of the genus Hesperaloe and processes for preparing the same. The extracts preferably comprise at least one saponin. In certain instances, the process includes providing biomass derived from non-woody plants of the genus Hesperaloe, milling the biomass, washing the biomass with a solvent to yield a crude extract and optionally further purifying the crude extract by filtration to remove water insoluble compositions such as fibers, fines, epidermal debris and lipids. Preferably, the composition extracted from Hesperaloe comprises 25(27)-dehydrofucreastatin, 5(6),25(27)-disdehydroyuccaloiside C, 5(6)-disdehydroyuccaloiside, C, furcreastatin, yuccaloiside, or a mixture thereof.
    Type: Application
    Filed: June 21, 2021
    Publication date: July 27, 2023
    Inventors: Ning Wei, Thomas G. Shannon, Brent M. Thompson, Gregory J. Wideman
  • Patent number: 11345791
    Abstract: A polymeric material that includes a thermoplastic composition containing a continuous phase that includes a matrix polymer and a siloxane component is provided. The siloxane component contains an ultrahigh molecular weight siloxane polymer that is dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: May 31, 2022
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Ryan J. McEneany, Yuriy Galabura, Antonio J. Carrillo Ojeda, Neil T. Scholl, Vasily A. Topolkaraev, David W. Hall, Juha P. Kemppinen, Peter S. Lortscher, Lori A. Eslinger, Brent M. Thompson, Gregory J. Wideman
  • Patent number: 11123228
    Abstract: A flushable tampon applicator product includes an outer tube for housing a tampon; an inner tube, at least a portion of which extends into the outer tube, wherein the outer tube includes an outer, body-contacting surface, wherein the inner tube is moveable relative to the outer tube and configured to expel a tampon from the outer tube, and wherein at least one of the outer tube and the inner tube comprises a thermoplastic composition including partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), a plasticizer, and a hydrophobic polymeric component, wherein at least one of the outer tube and the inner tube is a molded part; and a wrapper material configured for storage under high and low moisture storage conditions, the wrapper material having a water vapor transmission rate of less than 0.05 g/100 in2/day.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 21, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Patent number: 11124641
    Abstract: A water-dispersible injection-moldable composition includes partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), plasticizer, and a hydrophobic polymeric component, wherein the composition has a melt flow index of 5-180. The hydrophobic polymeric component can be a colorant within an ethylene matrix or polyethylene. The composition is flushable according to Guidance Document for Assessing the Flushability of Nonwoven Consumer Products (INDA and EDANA, 2006); Test FG 522.2 Tier 2—Slosh Box Disintegration Test. The PVOH has a hydrolysis of 87% to 89%.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 21, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Patent number: 11058791
    Abstract: A thin nanocomposite film for use in an absorbent article is provided. The film contains an ethylene polymer, a nanoclay having an organic surface treatment, and a compatibilizer that includes an olefin polymer containing an ethylenically unsaturated carboxylic acid monomer. The present inventors have discovered that through selective control over the particular type and concentration of the components used to form the film, as well as the manner in which it is formed, the modulus and tensile strength of the film can be significantly improved without having an adverse impact on its ductility.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 13, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Feng Chen, James Hongxue Wang, Gregory J. Wideman, Michael J. Faulks, Mark M. Mleziva
  • Patent number: 10869790
    Abstract: A package that contains a wrapper material that defines an interior cavity within which an absorbent article is removably positioned is provided. The wrapper material is formed from a film that includes a polymer composition containing at least one ethylene polymer and at least one nanofiller. The present inventors have discovered that through selective control over the particular type and concentration of these components, as well as the manner in which it is formed, the resulting package may generate a relatively low degree of noise when physically deformed.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 22, 2020
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Feng Chen, Michael J. Faulks, Mark M. Mleziva, Gregory J. Wideman
  • Patent number: 10849800
    Abstract: A film for use in an absorbent article is provided. The film is formed from a polymer composition that contains an ethylene polymer and a nanofiller. The present inventors have discovered that through selective control over the particular type and concentration of these components, as well as the manner in which it is formed, the resulting film may generate a relatively low degree of noise when physically deformed.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 1, 2020
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Feng Chen, Michael J. Faulks, Gregory J. Wideman
  • Patent number: 10753023
    Abstract: Polylactic acid fibers formed from a thermoplastic composition that contains polylactic acid and a polymeric toughening additive are provided. The present inventors have discovered that the specific nature of the components and process by which they are blended may be carefully controlled to achieve a composition having desirable morphological features. More particularly, the toughening additive can be dispersed as discrete physical domains within a continuous phase of the polylactic acid. These domains have a particular size, shape, and distribution such that upon fiber drawing, they absorb energy and become elongated. This allows the resulting composition to exhibit a more pliable and softer behavior than the otherwise rigid polylactic acid. Through selective control over the components and method employed, the present inventors have discovered that the resulting fibers may thus exhibit good mechanical properties, both during and after melt spinning.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: August 25, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Peiguang Zhou, Gregory J. Wideman, Tom Eby, Ryan J. McEneany
  • Publication number: 20200054494
    Abstract: A flushable tampon applicator product includes an outer tube for housing a tampon; an inner tube, at least a portion of which extends into the outer tube, wherein the outer tube includes an outer, body-contacting surface, wherein the inner tube is moveable relative to the outer tube and configured to expel a tampon from the outer tube, and wherein at least one of the outer tube and the inner tube comprises a thermoplastic composition including partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), a plasticizer, and a hydrophobic polymeric component, wherein at least one of the outer tube and the inner tube is a molded part; and a wrapper material configured for storage under high and low moisture storage conditions, the wrapper material having a water vapor transmission rate of less than 0.05 g/100 in2/day.
    Type: Application
    Filed: November 17, 2017
    Publication date: February 20, 2020
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Publication number: 20200056032
    Abstract: A water-dispersible injection-moldable composition includes partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), plasticizer, and a hydrophobic polymeric component, wherein the composition has a melt flow index of 5-180. The hydrophobic polymeric component can be a colorant within an ethylene matrix or polyethylene. The composition is flushable according to Guidance Document for Assessing the Flushability of Nonwoven Consumer Products (INDA and EDANA, 2006); Test FG 522.2 Tier 2—Slosh Box Disintegration Test. The PVOH has a hydrolysis of 87% to 89%.
    Type: Application
    Filed: November 17, 2017
    Publication date: February 20, 2020
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Publication number: 20200056027
    Abstract: A water-dispersible injection-moldable resin blend includes 20 wt. % to 80 wt. % thermoplastic elastomer, wherein the thermoplastic elastomer is ethylene-vinyl acetate (EVA), a thermoplastic polyurethane (TPU), or a styrenic block copolymer (SBC); and 80 wt. % to 20 wt. % modified poly(vinyl alcohol) (PVOH), wherein the modified PVOH is unmodified PVOH blended with glycerin. A flushable tampon applicator includes a grip region generally adjacent the outer end of the barrel, wherein the grip region of the barrel includes a water-dispersible injection-moldable resin blend including 20 wt. % to 80 wt. % thermoplastic elastomer, wherein the thermoplastic elastomer is ethylene-vinyl acetate (EVA), a thermoplastic polyurethane (TPU), or a styrenic block copolymer (SBC), and 80 wt. % to 20 wt. % modified poly(vinyl alcohol) (PVOH), wherein the modified PVOH is unmodified PVOH blended with glycerin.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 20, 2020
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Alphonse DeMARCO, Gregory J. WIDEMAN, Austin N. PICKETT, Mark M. MLEZIVA
  • Publication number: 20190366602
    Abstract: A method for forming an injection-molded part includes applying a coating to a mold cavity; maintaining a water-dispersible, thermoplastic composition at a temperature between 170° C. and 190° C., wherein the thermoplastic composition comprises partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), plasticizer, and a hydrophobic polymeric component, wherein the composition has a melt flow rate of from 40 grams per 10 minutes to 160 grams per 10 minutes when subjected to a load of 2160 grams at a temperature of 190° C. according to ASTM Test Method D1238-E; injecting the thermoplastic composition into the mold cavity; shaping the thermoplastic composition into a molded part within the mold cavity; and maintaining the mold temperature at less than 20° C.
    Type: Application
    Filed: November 17, 2017
    Publication date: December 5, 2019
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Publication number: 20190338097
    Abstract: A polymeric material that includes a thermoplastic composition containing a continuous phase that includes a matrix polymer and a siloxane component is provided. The siloxane component contains an ultrahigh molecular weight siloxane polymer that is dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
    Type: Application
    Filed: January 19, 2018
    Publication date: November 7, 2019
    Inventors: Ryan J. McEneany, Yuriy Galabura, Antonio J. Carrillo Ojeda, Neil T. Scholl, Vasily A. Topolkaraev, David W. Hall, Juha P. Kemppinen, Peter S. Lortscher, Lori A. Eslinger, Brent M. Thompson, Gregory J. Wideman
  • Publication number: 20190330770
    Abstract: Spun microfibers include a blend of 70 wt. % to 90 wt. % meltblown-grade polyolefin and 10 wt. % to 30 wt. % thermoplastic starch, wherein the microfibers are suitable for use in a wet-laid process. A method for producing an absorbent product includes producing a blend of 70 wt. %-90 wt. % meltblown-grade polyolefin with 10 wt. % to 30 wt. % thermoplastic modified starch (TPMS), wherein the blend prior to spinning has a melt flow index greater than 150; spinning the blend into microfibers in a fiber spinning process; cutting the microfibers into staple fibers; and incorporating the staple fibers into a wet-laid process for making a nonwoven web.
    Type: Application
    Filed: December 16, 2016
    Publication date: October 31, 2019
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Bo Shi, Gregory J. Wideman, Thomas G. Shannon, Mark M. Mleziva
  • Publication number: 20190284353
    Abstract: A film includes a polymer composition, the polymer composition including a polymer, an organoclay, a primary amide slip agent, and a secondary amide slip agent different from the primary amide slip agent. The film can have static and kinetic coefficients of friction less than 0.25 as measured using ASTM D1894. The primary amide slip agent can be a primary erucamide slip agent. The film can be a multi-layered film.
    Type: Application
    Filed: May 31, 2016
    Publication date: September 19, 2019
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Brent M. THOMPSON, Gregory J. WIDEMAN, Thomas G. SHANNON
  • Publication number: 20190255212
    Abstract: A water-dispersible injection-moldable composition includes a water-dispersible polymer, polyethylene glycol (PEG), plasticizer, and a hydrophobic polymeric component, wherein the composition has a melt flow index of 5-180. The water-dispersible polymer can be partially-hydrolyzed polyvinyl alcohol (PVOH) or ethylene-vinyl alcohol copolymer. The hydrophobic polymeric component can be a colorant within an ethylene matrix, polyethylene, a degradation product of glycerin/PVOH, erucamide, or poly(dimethyl siloxane). The plasticizer can be glycerin. The composition is flushable according to Guidance Document for Assessing the Flushability of Nonwoven Consumer Products (INDA and EDANA, 2006); Test FG 522.2 Tier 2—Slosh Box Disintegration Test.
    Type: Application
    Filed: November 17, 2017
    Publication date: August 22, 2019
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Publication number: 20190021914
    Abstract: An injection-molded article includes a water-dispersible injection-moldable composition including 82 wt. % to 86 wt. % partially-hydrolyzed polyvinyl alcohol (PVOH), 11 wt. % to 13 wt. % plasticizer, and 3 wt. % to 5 wt. % total colorant and slip additives, wherein the injection-molded article has an outer surface, and wherein the composition at the outer surface is surface cross-linked. A method for controlling the dispersibility of an injection-molded article having an outer surface includes formulating a water-dispersible injection-moldable composition including 82 wt. % to 86 wt. % partially-hydrolyzed polyvinyl alcohol (PVOH), 11 wt. % to 13 wt. % plasticizer, and 3 wt. % to 5 wt. % total colorant and slip additives; injection molding the single resin composition into the injection-molded article; and treating the outer surface to increase the cross-linking of the composition at the outer surface.
    Type: Application
    Filed: October 30, 2017
    Publication date: January 24, 2019
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Mark M. Mleziva
  • Patent number: 10131753
    Abstract: A multi-layered nanocomposite film for use in packaging is provided. More particularly, the film contains at least one core layer positioned adjacent to at least one outer layer. For example, in one embodiment, the film contains a core layer that is positioned between two outer layers. The core layer(s) and/or outer layer(s) may be formed from a polymer composition that contains an ethylene polymer, nanoclay having an organic surface treatment, and a compatibilizer that includes an olefin component and a polar component.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: November 20, 2018
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James Hongxue Wang, Feng Chen, Gregory J. Wideman, Michael J. Faulks, Mark M. Mleziva
  • Patent number: 9878065
    Abstract: A thin nanocomposite film for use in an absorbent article (e.g., sanitary napkin) is provided. The film contains a first ethylene polymer having a density of about 0.94 g/cm3 or less, second ethylene polymer having a density of greater than 0.94 g/cm3, and nanoclay having an organic surface treatment. The present inventors have discovered that through selective control over the particular type and concentration of the components used to form the film, as well as the manner in which it is formed, the properties of the film can be significantly improved.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: January 30, 2018
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James Hongxue Wang, Feng Chen, Gregory J. Wideman, Michael J. Faulks, Mark M. Mleziva
  • Publication number: 20170319400
    Abstract: A film for use in an absorbent article is provided. The film is formed from a polymer composition that contains an ethylene polymer and a nanofiller. The present inventors have discovered that through selective control over the particular type and concentration of these components, as well as the manner in which it is formed, the resulting film may generate a relatively low degree of noise when physically deformed.
    Type: Application
    Filed: January 30, 2015
    Publication date: November 9, 2017
    Inventors: Feng Chen, Michael J. Faulks, Gregory J. Wideman