Patents by Inventor Gregory K. Chen

Gregory K. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11157799
    Abstract: A neuromorphic computing system is provided which comprises: a synapse core; and a pre-synaptic neuron, a first post-synaptic neuron, and a second post-synaptic neuron coupled to the synaptic core, wherein the synapse core is to: receive a request from the pre-synaptic neuron, generate, in response to the request, a first address of the first post-synaptic neuron and a second address of the second post-synaptic neuron, wherein the first address and the second address are not stored in the synapse core prior to receiving the request.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 26, 2021
    Assignee: Intel Corporation
    Inventors: Huseyin E. Sumbul, Gregory K. Chen, Raghavan Kumar, Phil Christopher Knag, Ram Krishnamurthy
  • Patent number: 11138499
    Abstract: An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 5, 2021
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Jack T. Kavalieros, Ian A. Young, Sasikanth Manipatruni, Ram Krishnamurthy, Uygar Avci, Gregory K. Chen, Amrita Mathuriya, Raghavan Kumar, Phil Knag, Huseyin Ekin Sumbul, Nazila Haratipour, Van H. Le
  • Patent number: 11100385
    Abstract: Apparatus and method for a scalable, free running neuromorphic processor. For example, one embodiment of a neuromorphic processing apparatus comprises: a plurality of neurons; an interconnection network to communicatively couple at least a subset of the plurality of neurons; a spike controller to stochastically generate a trigger signal, the trigger signal to cause a selected neuron to perform a thresholding operation to determine whether to issue a spike signal.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: August 24, 2021
    Assignee: INTEL CORPORATION
    Inventors: Raghavan Kumar, Gregory K. Chen, Huseyin E. Sumbul, Ram K. Krishnamurthy, Phil Knag
  • Patent number: 11062203
    Abstract: In one embodiment, a method comprises receiving a selection of a neural network topology type; identifying a synapse memory mapping scheme for the selected neural network topology type from a plurality of synapse memory mapping schemes that are each associated with a respective neural network topology type; and mapping a plurality of synapse weights to locations in a memory based on the identified synapse memory mapping scheme.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Phil Knag, Ram K. Krishnamurthy
  • Patent number: 11061646
    Abstract: Compute-in memory circuits and techniques are described. In one example, a memory device includes an array of memory cells, the array including multiple sub-arrays. Each of the sub-arrays receives a different voltage. The memory device also includes capacitors coupled with conductive access lines of each of the multiple sub-arrays and circuitry coupled with the capacitors, to share charge between the capacitors in response to a signal. In one example, computing device, such as a machine learning accelerator, includes a first memory array and a second memory array. The computing device also includes an analog processor circuit coupled with the first and second memory arrays to receive first analog input voltages from the first memory array and second analog input voltages from the second memory array and perform one or more operations on the first and second analog input voltages, and output an analog output voltage.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Huseyin Ekin Sumbul, Phil Knag, Gregory K. Chen, Raghavan Kumar, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young
  • Patent number: 11048434
    Abstract: A memory circuit has compute-in-memory (CIM) circuitry that performs computations based on time-to-digital conversion (TDC). The memory circuit includes an array of memory cells addressable with column address and row address. The memory circuit includes CIM sense circuitry to sense a voltage for multiple memory cells triggered together. The CIM sense circuitry including a TDC circuit to convert a time for discharge of the multiple memory cells to a digital value. A processing circuit determines a value of the multiple memory cells based on the digital value.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 29, 2021
    Assignee: Intel Corporation
    Inventors: Raghavan Kumar, Phil Knag, Gregory K. Chen, Huseyin Ekin Sumbul, Sasikanth Manipatruni, Amrita Mathuriya, Abhishek Sharma, Ram Krishnamurthy, Ian A. Young
  • Patent number: 10956813
    Abstract: An apparatus is described. The apparatus includes a compute in memory circuit. The compute in memory circuit includes a memory circuit and an encoder. The memory circuit is to provide 2m voltage levels on a read data line where m is greater than 1. The memory circuit includes storage cells sufficient to store a number of bits n where n is greater than m. The encoder is to receive an m bit input and convert the m bit input into an n bit word that is to be stored in the memory circuit, where, the m bit to n bit encoding performed by the encoder creates greater separation between those of the voltage levels that demonstrate wider voltage distributions on the read data line than others of the voltage levels.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: March 23, 2021
    Assignee: Intel Corporation
    Inventors: Ian A. Young, Ram Krishnamurthy, Sasikanth Manipatruni, Gregory K. Chen, Amrita Mathuriya, Abhishek Sharma, Raghavan Kumar, Phil Knag, Huseyin Ekin Sumbul
  • Patent number: 10922607
    Abstract: In one embodiment, a processor is to store a membrane potential of a neural unit of a neural network; and calculate, at a particular time-step of the neural network, a change to the membrane potential of the neural unit occurring over multiple time-steps that have elapsed since the last time-step at which the membrane potential was updated, wherein each of the multiple time-steps that have elapsed since the last time-step is associated with at least one input to the neural unit that affects the membrane potential of the neural unit.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: February 16, 2021
    Assignee: Intel Corporation
    Inventors: Abhronil Sengupta, Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Phil Knag
  • Patent number: 10877752
    Abstract: A compute-in-memory (CIM) circuit that enables a multiply-accumulate (MAC) operation based on a current-sensing readout technique. An operational amplifier coupled with a bitline of a column of bitcells included in a memory array of the CIM circuit to cause the bitcells to act like ideal current sources for use in determining an analog voltage value outputted from the operational amplifier for given states stored in the bitcells and for given input activations for the bitcells. The analog voltage value sensed by processing circuitry of the CIM circuit and converted to a digital value to compute a multiply-accumulate (MAC) value.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Phil Knag, Ram Krishnamurthy, Sasikanth Manipatruni, Amrita Mathuriya, Abhishek Sharma, Ian A. Young
  • Patent number: 10860682
    Abstract: A binary CIM circuit enables all memory cells in a memory array to be effectively accessible simultaneously for computation using fixed pulse widths on the wordlines and equal capacitance on the bitlines. The fixed pulse widths and equal capacitance ensure that a minimum voltage drop in the bitline represents one least significant bit (LSB) so that the bitline voltage swing remains safely within the maximum allowable range. The binary CIM circuit maximizes the effective memory bandwidth of a memory array for a given maximum voltage range of bitline voltage.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: December 8, 2020
    Assignee: Intel Corporation
    Inventors: Phil Knag, Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young
  • Patent number: 10831446
    Abstract: A memory device that includes a plurality subarrays of memory cells to store static weights and a plurality of digital full-adder circuits between subarrays of memory cells is provided. The digital full-adder circuit in the memory device eliminates the need to move data from a memory device to a processor to perform machine learning calculations. Rows of full-adder circuits are distributed between sub-arrays of memory cells to increase the effective memory bandwidth and reduce the time to perform matrix-vector multiplications in the memory device by performing bit-serial dot-product primitives in the form of accumulating m 1-bit×n-bit multiplications.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 10, 2020
    Assignee: Intel Corporation
    Inventors: Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Phil Knag, Ram Krishnamurthy, Sasikanth Manipatruni, Amrita Mathuriya, Abhishek Sharma, Ian A. Young
  • Patent number: 10825509
    Abstract: A full-rail digital-read CIM circuit enables a weighted read operation on a single row of a memory array. A weighted read operation captures a value of a weight stored in the single memory array row without having to rely on weighted row-access. Rather, using full-rail access and a weighted sampling capacitance network, the CIM circuit enables the weighted read operation even under process variation, noise and mismatch.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Huseyin Ekin Sumbul, Gregory K. Chen, Raghavan Kumar, Phil Knag, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young
  • Publication number: 20200279850
    Abstract: Examples herein relate to a memory device comprising an eDRAM memory cell, the eDRAM memory cell can include a write circuit formed at least partially over a storage cell and a read circuit formed at least partially under the storage cell; a compute near memory device bonded to the memory device; a processor; and an interface from the memory device to the processor. In some examples, circuitry is included to provide an output of the memory device to emulate output read rate of an SRAM memory device comprises one or more of: a controller, a multiplexer, or a register. Bonding of a surface of the memory device can be made to a compute near memory device or other circuitry. In some examples, a layer with read circuitry can be bonded to a layer with storage cells. Any layers can be bonded together using techniques described herein.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 3, 2020
    Inventors: Abhishek SHARMA, Noriyuki SATO, Sarah ATANASOV, Huseyin Ekin SUMBUL, Gregory K. CHEN, Phil KNAG, Ram KRISHNAMURTHY, Hui Jae YOO, Van H. LE
  • Patent number: 10748603
    Abstract: A memory circuit has compute-in-memory circuitry that enables a multiply-accumulate (MAC) operation based on shared charge. Row access circuitry drives multiple rows of a memory array to multiply a first data word with a second data word stored in the memory array. The row access circuitry drives the multiple rows based on the bit pattern of the first data word. Column access circuitry drives a column of the memory array when the rows are driven. Accessed rows discharge the column line in an accumulative fashion. Sensing circuitry can sense voltage on the column line. A processor in the memory circuit computes a MAC value based on the voltage sensed on the column.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Huseyin Ekin Sumbul, Gregory K. Chen, Raghavan Kumar, Phil Knag, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young
  • Publication number: 20200233923
    Abstract: A binary CIM circuit enables all memory cells in a memory array to be effectively accessible simultaneously for computation using fixed pulse widths on the wordlines and equal capacitance on the bitlines. The fixed pulse widths and equal capacitance ensure that a minimum voltage drop in the bitline represents one least significant bit (LSB) so that the bitline voltage swing remains safely within the maximum allowable range. The binary CIM circuit maximizes the effective memory bandwidth of a memory array for a given maximum voltage range of bitline voltage.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Inventors: Phil KNAG, Gregory K. CHEN, Raghavan KUMAR, Huseyin Ekin SUMBUL, Abhishek SHARMA, Sasikanth MANIPATRUNI, Amrita MATHURIYA, Ram KRISHNAMURTHY, Ian A. YOUNG
  • Patent number: 10713558
    Abstract: In one embodiment, a method comprises determining that a membrane potential of a first neuron of a first neuron core exceeds a threshold; determining a first plurality of synapse cores that each store at least one synapse weight associated with the first neuron; and sending a spike message to the determined first plurality of synapse cores.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 14, 2020
    Assignee: Intel Corporation
    Inventors: Huseyin Ekin Sumbul, Gregory K. Chen, Raghavan Kumar, Phil Knag, Ram K. Krishnamurthy
  • Patent number: 10642922
    Abstract: A binary CIM circuit enables all memory cells in a memory array to be effectively accessible simultaneously for computation using fixed pulse widths on the wordlines and equal capacitance on the bitlines. The fixed pulse widths and equal capacitance ensure that a minimum voltage drop in the bitline represents one least significant bit (LSB) so that the bitline voltage swing remains safely within the maximum allowable range. The binary CIM circuit maximizes the effective memory bandwidth of a memory array for a given maximum voltage range of bitline voltage.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 5, 2020
    Assignee: Intel Corporation
    Inventors: Phil Knag, Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young
  • Publication number: 20200135700
    Abstract: An apparatus is formed. The apparatus includes a stack of semiconductor chips. The stack of semiconductor chips includes a logic chip and a memory stack, wherein, the logic chip includes at least one of a GPU and CPU. The apparatus also includes a semiconductor chip substrate. The stack of semiconductor chips are mounted on the semiconductor chip substrate. At least one other logic chip is mounted on the semiconductor chip substrate. The semiconductor chip substrate includes wiring to interconnect the stack of semiconductor chips to the at least one other logic chip.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 30, 2020
    Inventors: Abhishek SHARMA, Hui Jae YOO, Van H. LE, Huseyin Ekin SUMBUL, Phil KNAG, Gregory K. CHEN, Ram KRISHNAMURTHY
  • Publication number: 20200098824
    Abstract: Embodiments herein describe techniques for a semiconductor device including a RRAM memory cell. The RRAM memory cell includes a substrate, a RRAM storage cell above the substrate, and a diode adjacent to the RRAM storage cell. The RRAM storage cell includes a first electrode located in a first metal layer above the substrate, a resistive switching material layer adjacent to the first electrode, and a second electrode adjacent to the resistive switching material layer. The second electrode is shared between the RRAM storage cell and the diode. The diode includes the second electrode shared with the RRAM storage cell, a semiconductor layer adjacent to the second electrode, and a third electrode located in a second metal layer above the substrate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Abhishek SHARMA, Gregory K. CHEN, Ram KRISHNAMURTHY, Ravi PILLARISETTY, Sasikanth MANIPATRUNI, Amrita MATHURIYA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL, Urusa ALAAN, Noriyuki SATO
  • Publication number: 20200097807
    Abstract: A compute near memory binary neural network accelerator with digital circuits that achieves energy efficiencies comparable to or surpassing a compute near memory binary neural network accelerator with analog circuits is provided. The compute near memory binary neural network accelerator with digital circuits is more process scalable, robust to process, voltage and temperature variations, and immune to circuit noise.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Phil KNAG, Gregory K. CHEN, Raghavan KUMAR, Huseyin Ekin SUMBUL, Ram KRISHNAMURTHY