Patents by Inventor Gregory K. Hofstetter

Gregory K. Hofstetter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096238
    Abstract: A simulated abdominal wall for laparoscopic surgical training and methods of making the wall are provided. The simulated abdominal wall is dome-shaped having a visual appearance of an insufflated abdomen. Also, the wall is strong enough to withstand penetration with surgical trocars without unrealistic buckling or deformation. The wall is supported by a frame along the perimeter without any support structures traversing the wall that would interfere with port placement. The wall includes multiple layers connected together to form a unitary wall to fit a laparoscopic trainer. In one method, a projection of a dome is cut from a flat layer of foam material and assembled within a mold cavity. Consecutive layers with the same or different projection pattern are laid up inside the mold cavity. In another method, a vacuum mold together with heat is used to deform each foam layer. Adhesive is applied between layers to simultaneously join the adjacent layers upon deformation.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Joel B. Velasco
  • Publication number: 20240062680
    Abstract: Simulated tissue structures and methods of making them are disclosed. An elastic first material is placed in tension. An elastic second material is adhered to the first material while the first material is in tension. The adhered second material and the first material in tension forms a first shape of the simulated tissue structure. Tension on the first material is released. In releasing the tension of the first material, a force is exerted on the adhered second material bring the combination of the first material and the second material into a second shape. The first shape is maintained by a mold or mandrel and the second shape is the desired shape of the simulated tissue structure.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Inventor: Gregory K. Hofstetter
  • Patent number: 11887504
    Abstract: Simulated tissue structures for practicing surgical techniques and methods of manufacturing those structures are provided. In particular, a realistic organ model or simulated tissue portion for practicing the removal of a tumor or other undesired tissue followed by suturing a remnant defect as part of the same surgical procedure is provided. The simulated tissue structures include a polyp simulation having a suturable mesh layer that is separable from a defect layer. A simulated colon model with interchangeable and suturable tissue pods is also provided as is a fully suturable rectum model and a rectum model with integrative suturable and removable polyp zones.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: January 30, 2024
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Nikolai Poulsen, Khodr Saleh
  • Patent number: 11869381
    Abstract: A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside the frame. The simulated tissue model is adapted for practicing a number of surgical procedures including but not limited to transanal excisions and transvaginal hysterectomies. Portions of the frame comprises a material adhesively compatible with the material of portions of the simulated tissue model to secure and suspend the simulated tissue model within the frame. The simulated tissue model may also include simulated vasculature configured to loop through apertures in the frame to secure and suspend the simulated tissue model within the frame.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: January 9, 2024
    Inventors: Gregory K. Hofstetter, Anysa Fernandez
  • Patent number: 11869378
    Abstract: A surgical training device is provided. The training device includes a model for practicing the passage of needle and suture. The model includes a base with a plurality of openings configured to receive a plurality of suture tabs. The suture tabs are made of elastomeric material. Some suture tabs includes pre-formed tab apertures for the passage of a suture. Other suture tabs include a penetrable area through which a suture needle may penetrate for passing a suture. The suture tabs are movable with respect to the base to orientate them at different angles with respect to the base. The base itself may include portions that are angled with respect to each other. The suture tabs are movable with respect to the base to pull, expose or open the tab apertures and surfaces. Some of the tab apertures are slits that open upon being pulled relative to the base requiring the user to practice holding the tab while passing the needle through the tab.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: January 9, 2024
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Khodr Saleh, Natasha Felsinger, Katie Black, Milan Draganov
  • Publication number: 20230419862
    Abstract: A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside the enclosure. The simulated tissue model is adapted for practicing a number of surgical procedures including but not limited to transanal excisions and transvaginal hysterectomies. The simulated tissue model includes one more components and is interchangeably connected to the frame with fasteners configured to pass through apertures in the frame to suspend the simulated tissue model within the frame. The enclosure of the frame is increasingly laterally constricted along the longitudinal axis to progressively increase the confinement of the components of the simulated tissue model.
    Type: Application
    Filed: August 2, 2023
    Publication date: December 28, 2023
    Inventors: Katie Black, Gregory K. Hofstetter, Natasha Felsinger, Tracy Breslin, Serene Wachli, Sean Kenneday
  • Publication number: 20230397931
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 14, 2023
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Patent number: 11830378
    Abstract: A simulated abdominal wall for laparoscopic surgical training and methods of making the wall are provided. The simulated abdominal wall is dome-shaped having a visual appearance of an insufflated abdomen. Also, the wall is strong enough to withstand penetration with surgical trocars without unrealistic buckling or deformation. The wall is supported by a frame along the perimeter without any support structures traversing the wall that would interfere with port placement. The wall includes multiple layers connected together to form a unitary wall to fit a laparoscopic trainer. In one method, a projection of a dome is cut from a flat layer of foam material and assembled within a mold cavity. Consecutive layers with the same or different projection pattern are laid up inside the mold cavity. In another method, a vacuum mold together with heat is used to deform each foam layer. Adhesive is applied between layers to simultaneously join the adjacent layers upon deformation.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: November 28, 2023
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Joel B. Velasco
  • Patent number: 11804150
    Abstract: Simulated tissue structures and methods of making them are disclosed. An elastic first material is placed in tension. An elastic second material is adhered to the first material while the first material is in tension. The adhered second material and the first material in tension forms a first shape of the simulated tissue structure. Tension on the first material is released. In releasing the tension of the first material, a force is exerted on the adhered second material bring the combination of the first material and the second material into a second shape. The first shape is maintained by a mold or mandrel and the second shape is the desired shape of the simulated tissue structure.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: October 31, 2023
    Assignee: Applied Medical Resources Corporation
    Inventor: Gregory K. Hofstetter
  • Patent number: 11737782
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: August 29, 2023
    Assignee: Applied Medical Resources Corporation
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Patent number: 11721242
    Abstract: A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside the enclosure. The simulated tissue model is adapted for practicing a number of surgical procedures including but not limited to transanal excisions and transvaginal hysterectomies. The simulated tissue model includes one more components and is interchangeably connected to the frame with fasteners configured to pass through apertures in the frame to suspend the simulated tissue model within the frame. The enclosure of the frame is increasingly laterally constricted along the longitudinal axis to progressively increase the confinement of the components of the simulated tissue model.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: August 8, 2023
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Gregory K. Hofstetter, Natasha Felsinger, Tracy Breslin, Serene Wachli, Sean Kenneday
  • Publication number: 20230222942
    Abstract: A simulated training model having a force perception mechanism to identify and notify to a user when an amount of force being applied to the model exceeds a pre-determined amount. The force perception mechanism has two states that are used to identify when an amount of force being applied to the model exceeds the pre-determined amount. In a first state, one or more portions of the simulated training model are removably connected to each other; for example the body to the base and/or the post to the body. The second state corresponds to when one or more of the portions of the simulated training model become detached from each other. When the transition occurs between the first state to the second state, the surgical training model informs the user that the force being applied to one or more of the portions of the simulated training model had exceeded the pre-determined amount.
    Type: Application
    Filed: January 9, 2023
    Publication date: July 13, 2023
    Inventors: Daiane Aizen Grill, Gregory K. Hofstetter
  • Publication number: 20230222945
    Abstract: A surgical training model for teaching, practicing, and assessing motor and cognitive skills associated with laparoscopic surgery is provided. The surgical training model has at least a portion (e.g., limbs) that is manipulatable by a user in order to maneuver those portions in a desired manner in order to interact with other portions of the surgical training model. Force perception mechanisms can also be included to inform a user when an applied force on one or more portions of the surgical training model is over a pre-determined amount.
    Type: Application
    Filed: January 9, 2023
    Publication date: July 13, 2023
    Inventors: Daiane Aizen Grill, Gregory K. Hofstetter
  • Publication number: 20230196945
    Abstract: A simulated tissue structure for surgical training is provided. The simulated tissue structure includes a first layer made of silicone and a second layer made of silicone interconnected by a third layer made of polyester fiber that is embedded in part in the first layer and in part in the second layer to create a mechanical linkage between the first layer and the second layer. Part of the third layer that is adjacent to the first layer and part of the third layer that is adjacent to the second layer includes fiber strands coated in silicone. An inclusion that mimics an anatomical structure is located between the first layer and the second layer. The third layer of polyester fibers provides a realistic dissection plane for the practice of the surgical excision of the inclusion.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Inventors: Gregory K. Hofstetter, Katie Black
  • Publication number: 20230157723
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 25, 2023
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew A. Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Publication number: 20230126564
    Abstract: A colpotomy model is provided for assisting in the training and practice of users performing a colpotomy procedure. The colpotomy model has a simulated vaginal opening which covers a proximal end of a simulated pelvic frame and a simulated vaginal canal which defines an internal space that encompasses a simulated cervix. The simulated cervix is suspended via at least one cord to provide a realistic response to user interaction with the simulated cervix. The user is directed to manipulate the simulated cervix and make one or more incisions where the simulated vaginal canal becomes reflected near the simulated cervix from the manipulations. The user is then directed to continue through the colpotomy model to access a simulated peritoneal cavity or other portions of the colpotomy model in accordance with a simulated procedure being performed.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Inventors: Jacqueline Foss, Gregory K. Hofstetter, Oscar Raygan
  • Publication number: 20230070953
    Abstract: A surgical training model can have features for training surgical suturing techniques. The training model can be formed as a sheet of simulated tissue having at least one cut with markings arranged on either side of the cut. The markings can be formed of a first layer of resilient simulated tissue material having a color that contrasts with a color of the remainder of the sheet of simulated tissue material. The sheet of simulated tissue material can have several cuts having different configurations and orientations to facilitate suturing training for a variety of tissue orientations. The sheet of simulated tissue material can further include holes positioned to be mounted to a base of a surgical training system. The sheet of simulated tissue material can be manufactured by molding a marking layer and casting a tissue layer over the marking layer.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Gregory K. Hofstetter, Brian Carter, Oscar Raygan
  • Patent number: 11587466
    Abstract: A simulated tissue structure for surgical training is provided. The simulated tissue structure includes a first layer made of silicone and a second layer made of silicone interconnected by a third layer made of polyester fiber that is embedded in part in the first layer and in part in the second layer to create a mechanical linkage between the first layer and the second layer. Part of the third layer that is adjacent to the first layer and part of the third layer that is adjacent to the second layer includes fiber strands coated in silicone. An inclusion that mimics an anatomical structure is located between the first layer and the second layer. The third layer of polyester fibers provides a realistic dissection plane for the practice of the surgical excision of the inclusion.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: February 21, 2023
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Katie Black
  • Publication number: 20230035446
    Abstract: Embodiments of the present invention provide GYN pathology simulation models for surgical training. These models are energy-compatible models emulating the tissue-based diseases of the female reproductive system to allow the surgical trainees and surgeons to practice advanced OB/GYN surgical skills. One simulated GYN model includes an electrically conductive elongated tube encapsulating a mass of non-conductive material. The elongated tube having a sidewall with an inner surface and outer surface extending between a proximal end and distal end. The sidewall is configured to have a cavity with a specific volume to yield an external protuberance when filled with the mass of non-conductive material. Another simulated GYN model includes a fluid-filled cystic body encapsulated within an electrically conductive bulbous hollow structure.
    Type: Application
    Filed: August 1, 2022
    Publication date: February 2, 2023
    Inventors: Shih Chieh Yang, Tulsi Patel, Emma Stumpf, Oscar Raygan, Gregory K. Hofstetter
  • Publication number: 20230009004
    Abstract: A system for training surgical camera navigation skills is provided. A plurality of two-dimensional targets is printed on an upper surface of a flat sheet of material. The sheet is easily transportable and placed onto a base of a typical box trainer that defines a simulated abdominal cavity between the base and a top. A scope is inserted through a port in the top and the targets are viewed on a live video feed displayed to a trainee on a screen with the targets being otherwise obscured from view by the box trainer. The trainee can move the scope back and forth, roll and angulate the scope about the port in order to view the targets on the sheet at different angles and distances. The trainee is instructed to follow a sequence of targets marked on the sheet and manipulate the scope to align consecutively each target with the edges of the screen in the sequence provided.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 12, 2023
    Inventor: Gregory K. Hofstetter