Patents by Inventor Gregory Kapp

Gregory Kapp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240400648
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Application
    Filed: April 18, 2024
    Publication date: December 5, 2024
    Inventors: Gregory KAPP, Laura SERWER, Natacha LE MOAN, Stephen P.L. CARY
  • Publication number: 20240402186
    Abstract: Systems and methods for obtaining qualitative or quantitative measurements of proteoforms of polypeptides are described. The described methods include measurements of affinity reagent binding on single-molecule polypeptide arrays to distinguish between polypeptide isoforms. The described methods may provide high resolution quantitative comparisons of proteoforms with very low copy numbers.
    Type: Application
    Filed: July 24, 2024
    Publication date: December 5, 2024
    Inventors: Mallick PARAG, Jarrett D. EGERTSON, Gregory KAPP
  • Patent number: 12092642
    Abstract: Systems and methods for obtaining qualitative or quantitative measurements of proteoforms of polypeptides are described. The described methods include measurements of affinity reagent binding on single-molecule polypeptide arrays to distinguish between polypeptide isoforms. The described methods may provide high resolution quantitative comparisons of proteoforms with very low copy numbers.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: September 17, 2024
    Assignee: NAUTILUS SUBSIDIARY, INC.
    Inventors: Parag Mallick, Jarrett D. Egertson, Gregory Kapp
  • Patent number: 11993807
    Abstract: An affinity reagent, having: (a) a retaining component such as a structured nucleic acid particle; and (b) one or both of (i) one or more label components attached to the retaining component, and (ii) one or more binding components attached to the retaining component.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: May 28, 2024
    Assignee: Nautilus Subsidiary, Inc.
    Inventors: Tural Aksel, Torri Rinker, Markus Burns, Michael Dorwart, Rachel Galimidi, Dmitriy Gremyachinskiy, Stephen Hendricks, Elvis Ikwa, Gregory Kapp, Joshua Simon Klein, Julia Robinson, Cassandra Stawicki, Sonal Tonapi, Parag Mallick
  • Patent number: 11987614
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: May 21, 2024
    Assignee: OMNIOX, INC.
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary
  • Publication number: 20240018574
    Abstract: An affinity reagent, having: (a) a retaining component such as a structured nucleic acid particle; and (b) one or both of (i) one or more label components attached to the retaining component, and (ii) one or more binding components attached to the retaining component.
    Type: Application
    Filed: June 2, 2023
    Publication date: January 18, 2024
    Inventors: Tural AKSEL, Torri RINKER, Markus BURNS, Michael DORWART, Rachel GALIMIDI, Dmitriy GREMYACHINSKIY, Stephen HENDRICKS, Elvis IKWA, Gregory KAPP, Joshua Simon KLEIN, Julia ROBINSON, Cassandra STAWICKI, Sonal TONAPI, Parag MALLICK
  • Publication number: 20230272459
    Abstract: An affinity reagent, having: (a) a retaining component such as a structured nucleic acid particle; and (b) one or both of (i) one or more label components attached to the retaining component, and (ii) one or more binding components attached to the retaining component.
    Type: Application
    Filed: March 7, 2023
    Publication date: August 31, 2023
    Inventors: Tural AKSEL, Torri RINKER, Markus BURNS, Michael DORWART, Rachel GALIMIDI, Dmitriy GREMYACHINSKIY, Stephen HENDRICKS, Elvis IKWA, Gregory KAPP, Joshua Simon KLEIN, Julia ROBINSON, Cassandra STAWICKI, Sonal TONAPI, Parag MALLICK
  • Publication number: 20230212322
    Abstract: Methods for the preparation of sample polypeptide fractions are described. Sample polypeptides may be isolated from any of a variety of sources, including biological and non-biological systems. Sample polypeptides may be coupled or conjugated to other molecules to permit characterization of the sample polypeptide fractions. Sample polypeptide fractions may be prepared for analysis by a polypeptide assay.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Gregory KAPP, Julia ROBINSON, Parag MALLICK, Torri RINKER, Deepthi ANUMALA
  • Patent number: 11692217
    Abstract: An affinity reagent, having: (a) a retaining component such as a structured nucleic acid particle; and (b) one or both of (i) one or more label components attached to the retaining component, and (ii) one or more binding components attached to the retaining component.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: July 4, 2023
    Assignee: Nautilus Subsidiary, Inc.
    Inventors: Tural Aksel, Torri Rinker, Markus Burns, Michael Dorwart, Rachel Galimidi, Dmitriy Gremyachinskiy, Stephen Hendricks, Elvis Ikwa, Gregory Kapp, Joshua Simon Klein, Julia Robinson, Cassandra Stawicki, Sonal Tonapi, Parag Mallick
  • Publication number: 20230090454
    Abstract: Methods and systems for identifying and/or quantifying polypeptide binding interactions of ligand-binding polypeptides are disclosed. Detailed methods include methods for identifying binding ligands of ligand-binding polypeptides and methods for assessing changes in binding behavior due to alterations of ligand-binding polypeptides. Detailed systems include array-based systems that permit detection of ligand binding interactions at single-analyte resolution.
    Type: Application
    Filed: September 19, 2022
    Publication date: March 23, 2023
    Inventors: Gregory KAPP, James Henry JOLY, James SHERMAN, Torri Elise RINKER, Raymond MAK
  • Publication number: 20220412998
    Abstract: Methods for performing procedures on single analytes at single-analyte resolution are disclosed. The methods utilize an iterative approach to performing a sequence of steps during a single-analyte process. Control of the single-analyte process is achieved by implementing actions during each iteration based upon one or more determined process metrics. Systems are also detailed for implementing the disclosed methods at single-analyte resolution.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 29, 2022
    Inventors: Vadim LOBANOV, Jarrett EGERTSON, Shunqiang WANG, Pierre INDERMUHLE, Gregory KAPP, Ryan SEGHERS, Siavash YOUSEFI
  • Publication number: 20220236282
    Abstract: Systems and methods for obtaining qualitative or quantitative measurements of proteoforms of polypeptides are described. The described methods include measurements of affinity reagent binding on single-molecule polypeptide arrays to distinguish between polypeptide isoforms. The described methods may provide high resolution quantitative comparisons of proteoforms with very low copy numbers.
    Type: Application
    Filed: January 19, 2022
    Publication date: July 28, 2022
    Inventors: Parag MALLICK, Jarrett D. EGERTSON, Gregory KAPP
  • Publication number: 20220227890
    Abstract: Methods for the preparation of sample polypeptide fractions are described. Sample polypeptides may be isolated from any of a variety of sources, including biological and non-biological systems. Sample polypeptides may be coupled or conjugated to other molecules to permit characterization of the sample polypeptide fractions. Sample polypeptide fractions may be prepared for analysis by a polypeptide assay.
    Type: Application
    Filed: January 21, 2022
    Publication date: July 21, 2022
    Inventors: Gregory Kapp, Julia Robinson, Parag Mallick, Torri Rinker, Deepthi Anumala
  • Publication number: 20220162684
    Abstract: An affinity reagent, having: (a) a retaining component such as a structured nucleic acid particle; and (b) one or both of (i) one or more label components attached to the retaining component, and (ii) one or more binding components attached to the retaining component.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 26, 2022
    Inventors: Tural AKSEL, Torri RINKER, Markus BURNS, Michael DORWART, Rachel GALIMIDI, Dmitriy GREMYACHINSKIY, Stephen HENDRICKS, Elvis IKWA, Gregory KAPP, Joshua KLEIN, Julia ROBINSON, Cassandra STAWICKI, Sonal TONAPI, Parag MALLICK
  • Publication number: 20220048977
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 17, 2022
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary
  • Patent number: 11117952
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: September 14, 2021
    Assignee: OMNIOX, INC.
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary
  • Publication number: 20210002351
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 7, 2021
    Applicant: Omniox, Inc.
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary
  • Patent number: 10766947
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: September 8, 2020
    Assignee: Omniox, Inc.
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary
  • Publication number: 20200017574
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Application
    Filed: June 24, 2019
    Publication date: January 16, 2020
    Applicant: Omniox, Inc.
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary
  • Patent number: 10385116
    Abstract: The invention provides polymeric H-NOX proteins for the delivery of oxygen with longer circulation half-lives compared to monomeric H-NOX proteins. Polymeric H-NOX proteins extravasate into and preferentially accumulate in tumor tissue for sustained delivery of oxygen. The invention also provides the use of H-NOX proteins as radiosensitizers for the treatment of brain cancers.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: August 20, 2019
    Assignee: Omniox, Inc.
    Inventors: Gregory Kapp, Laura Serwer, Natacha Le Moan, Stephen P. L. Cary