Patents by Inventor Gregory L. Plett

Gregory L. Plett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10422824
    Abstract: A system and method for determining an estimated battery cell state-of-charge and for determining an estimated battery cell resistance and for determining an estimated battery cell available energy is provided. The method includes measuring at least one of a battery cell voltage, a battery cell current, and a battery cell temperature. The method further includes determining an adapted estimated polarization voltage vector. The method further includes estimating the battery cell state-of-charge based on the adapted estimated polarization voltage vector and at least one of the battery cell voltage, the battery cell current, and the battery cell temperature. The method can further include computing the estimated battery cell resistance. The method further stores values corresponding to the estimated battery cell state-of-charge and the estimated battery cell resistance and the estimated battery cell available energy in a memory.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: September 24, 2019
    Assignee: NIKOLA LLC
    Inventor: Gregory L. Plett
  • Patent number: 10298026
    Abstract: An apparatus for model predictive control (“MPC”) is disclosed. A method and system also perform the functions of the apparatus. The apparatus includes a measurement module that receives battery status information from one or more sensors receiving information from a battery cell, and a Kalman filter module that uses a Kalman filter and the battery status information to provide a state estimate vector. The apparatus includes a battery model module that inputs the state estimate vector and battery status information into a battery model and calculates a battery model output, the battery model representing the battery cell, and an MPC optimization module that inputs one or more battery model outputs and an error signal in a model predictive control algorithm to calculate an optimal response. The optimal response includes a modification of the error signal.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: May 21, 2019
    Assignee: Utah State University
    Inventors: Michael Scott Trimboli, Gregory L. Plett, Regan A. Zane, Kandler Smith, Dragan Maksimovic, Michael Evzelman, Daniel Costinett, Richard Dyche Anderson
  • Patent number: 10277041
    Abstract: An apparatus includes a battery state module that determines a battery state of each of a plurality of battery cells forming a battery unit. A battery state includes a health of the battery cell. A battery state of a battery cell differs from a battery state of other battery cells of the battery unit. Each battery cell is connected to a shared bus through a bypass converter that provides power from the battery cell to the shared bus. A charge/discharge modification module determines, based on battery state, an amount to vary a charging characteristic for each battery cell compared to a reference charging characteristic. Each charging characteristic varies as a function of a reference state. A charge/discharge module adjusts charging/discharging of a battery cell of the battery unit based on the charging characteristic of the battery cell.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: April 30, 2019
    Assignees: UTAH STATE UNIVERSITY, ALLIANCE FOR SUSTAINABLE ENERGY, LLC, FORD GLOBAL TECHNOLOGIES, LLC, THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE
    Inventors: Regan A. Zane, Michael Evzelman, Daniel Costinett, Dragan Maksimovic, Richard Dyche Anderson, Kandler Smith, Michael Scott Trimboli, Gregory L. Plett
  • Publication number: 20190067753
    Abstract: A heterogeneous energy storage device and a method for controlling a heterogeneous energy storage device are provided. In one implementation, a heterogeneous energy storage device is provided. The heterogeneous energy storage device includes a first energy storage device, a second energy storage device and a capacitive device. The first energy storage device has a first energy capacity and a first power to energy ratio (P/E). The second energy storage device has a second total energy capacity and a second P/E ratio different from the first P/E ratio. The capacitive device is coupled in series with the first energy storage device, wherein the second energy storage device is coupled in parallel with the series combination of the capacitive device and the first energy storage device. In another implementation, a method of controlling a heterogeneous energy storage device including a first energy storage device and a second energy storage device is provided.
    Type: Application
    Filed: February 24, 2017
    Publication date: February 28, 2019
    Inventors: Dragan W. MAKSIMOVIC, Khurram K. AFRIDI, Regan A. ZANE, Gregory L. PLETT, Michael Scott TRIMBOLI
  • Publication number: 20160336765
    Abstract: An apparatus for model predictive control (“MPC”) is disclosed. A method and system also perform the functions of the apparatus. The apparatus includes a measurement module that receives battery status information from one or more sensors receiving information from a battery cell, and a Kalman filter module that uses a Kalman filter and the battery status information to provide a state estimate vector. The apparatus includes a battery model module that inputs the state estimate vector and battery status information into a battery model and calculates a battery model output, the battery model representing the battery cell, and an MPC optimization module that inputs one or more battery model outputs and an error signal in a model predictive control algorithm to calculate an optimal response. The optimal response includes a modification of the error signal.
    Type: Application
    Filed: July 29, 2016
    Publication date: November 17, 2016
    Inventors: Michael Scott Trimboli, Gregory L. Plett, Regan A. Zane, Kandler Smith, Dragan Maksimovic, Michael Evzelman, Daniel Costinett, Richard Dyche Anderson
  • Publication number: 20160336767
    Abstract: An apparatus includes a battery state module that determines a battery state of each of a plurality of battery cells forming a battery unit. A battery state includes a health of the battery cell. A battery state of a battery cell differs from a battery state of other battery cells of the battery unit. Each battery cell is connected to a shared bus through a bypass converter that provides power from the battery cell to the shared bus. A charge/discharge modification module determines, based on battery state, an amount to vary a charging characteristic for each battery cell compared to a reference charging characteristic. Each charging characteristic varies as a function of a reference state. A charge/discharge module adjusts charging/discharging of a battery cell of the battery unit based on the charging characteristic of the battery cell.
    Type: Application
    Filed: July 29, 2016
    Publication date: November 17, 2016
    Inventors: Regan A. Zane, Michael Evzelman, Daniel Costinett, Dragan Maksimovic, Richard Dyche Anderson, Kandler Smith, Michael Scott Trimboli, Gregory L. Plett
  • Patent number: 8918299
    Abstract: A system and method for maximizing a battery pack total energy metric indicative of a total energy of a battery pack is provided. The method includes receiving battery cell charge capacity estimates for all cells in the battery pack, composing battery pack configurations comprising subsets of the totality of battery cells, evaluating a battery pack energy metric for every battery pack configuration that is composed, selecting the battery pack configuration that has the maximum battery pack energy metric, and storing values indicative of the selected battery pack configuration in a memory.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 23, 2014
    Assignee: American Electric Vehicles, Inc.
    Inventor: Gregory L. Plett
  • Patent number: 8519675
    Abstract: A system, a method, and an article of manufacture for determining an estimated battery cell module state indicative of a state of a battery cell module of a battery pack are provided. The method includes measuring at least one of a battery cell module voltage, a battery cell module current, and a battery cell module temperature. The method further includes determining the estimated battery cell module state of the battery cell module at a predetermined time based on an estimated battery pack state and at least one of the battery cell module voltage, the battery cell module current, and the battery cell module temperature. The method further includes storing a vector corresponding to the estimated battery cell module state in a memory.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 27, 2013
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett
  • Patent number: 8427105
    Abstract: A system and method for equalizing a battery pack during a battery pack charging process in accordance with an exemplary embodiment is provided. The method includes receiving total capacity estimates for all battery cells in the battery pack, and receiving state-of-charge estimates for all battery cells in the battery pack. The method further includes computing an equalization metric for all battery cells in the battery pack. The method further includes determining an equalization action for all battery cells in the battery pack, and initiating that equalization action. The method further includes executing a battery pack charging step.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 23, 2013
    Inventor: Gregory L. Plett
  • Patent number: 8103485
    Abstract: A system and a method for computing an estimated state of charge and an estimated cell resistance of an electrochemical cell are provided. The method includes predicting a first cell resistance value indicating a present resistance of the electrochemical cell utilizing a first nonlinear cell model. The method further includes predicting a first state of charge value indicating a present state of charge of the electrochemical cell utilizing a second nonlinear cell model. The method further includes measuring a voltage and, a current associated with the electrochemical cell to obtain a voltage value and a current value, respectively. The method further includes estimating a second state of charge value indicating the present state of charge of the electrochemical cell utilizing the second nonlinear cell model based on the first state of charge value, the first cell resistance value, the voltage value, and the current value.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: January 24, 2012
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett
  • Publication number: 20110257916
    Abstract: A system, a method, and an article of manufacture for determining an estimated battery cell module state indicative of a state of a battery cell module of a battery pack are provided. The method includes measuring at least one of a battery cell module voltage, a battery cell module current, and a battery cell module temperature. The method further includes determining the estimated battery cell module state of the battery cell module at a predetermined time based on an estimated battery pack state and at least one of the battery cell module voltage, the battery cell module current, and the battery cell module temperature. The method further includes storing a vector corresponding to the estimated battery cell module state in a memory.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Applicant: LG CHEM LTD.
    Inventor: Gregory L. Plett
  • Patent number: 8041522
    Abstract: A system and method for determining an estimated battery cell total capacity indicative of a total capacity of a battery cell is provided. The method includes receiving a first battery cell state-of-charge estimate at a first time and receiving a second battery cell state-of-charge estimate at a second time subsequent to the first time, measuring an integrated battery cell current value indicative of the integrated battery cell current between the first time and the second time, updating at least one recursive parameter based on the first battery cell state-of-charge estimate, the second battery cell state-of-charge estimate, and the integrated battery cell current value, determining the estimated battery cell total capacity based on at least one recursive parameter, and storing a value corresponding to the estimated battery cell total capacity in a memory.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 18, 2011
    Assignee: American Electric Vehicles, Ind.
    Inventor: Gregory L. Plett
  • Patent number: 8035345
    Abstract: A system, a method, and an article of manufacture for determining an estimated combined battery state-parameter vector are provided. The method determines the estimated combined battery state-parameter vector based on a plurality of predicted the combined battery state-parameter vectors, a plurality of predicted battery output vectors, and a battery output vector.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: October 11, 2011
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett
  • Patent number: 7994755
    Abstract: A system, a method, and an article of manufacture for determining an estimated battery cell module state indicative of a state of a battery cell module of a battery pack are provided. The method includes measuring at least one of a battery cell module voltage, a battery cell module current, and a battery cell module temperature. The method further includes determining the estimated battery cell module state of the battery cell module at a predetermined time based on an estimated battery pack state and at least one of the battery cell module voltage, the battery cell module current, and the battery cell module temperature. The method further includes storing a vector corresponding to the estimated battery cell module state in a memory.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 9, 2011
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett
  • Patent number: 7969120
    Abstract: The present invention relates to a method and an apparatus for estimating discharge and charge power of battery applications, including battery packs used in Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV). One charge/discharge power estimating method incorporates voltage, state-of-charge (SOC), power, and current design constraints and works for a user-specified prediction time horizon ?t. At least two cell models are used in calculating maximum charge/discharge power based on voltage limits. The first is a simple cell model that uses a Taylor-series expansion to linearize the equation involved. The second is a more complex and accurate model that models cell dynamics in discrete-time state-space form. The cell model can incorporate a inputs such as temperature, resistance, capacity, etc. One advantage of using model-based approach is that the same model may be used in both Kalman-filtering to produce the SOC and the estimation of maximum charge/discharge current based on voltage limits.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 28, 2011
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett
  • Patent number: 7965059
    Abstract: A system, a method, and an article of manufacture for determining an estimated battery parameter vector indicative of a parameter of a battery are provided. The method determines a first estimated battery parameter vector indicative of a parameter of the battery at a first predetermined time based on a plurality of predicted battery parameter vectors, a plurality of predicted battery output vectors, and a first battery output vector.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: June 21, 2011
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett
  • Publication number: 20110130985
    Abstract: A system and method for determining an estimated battery cell total capacity indicative of a total capacity of a battery cell is provided. The method includes receiving a first battery cell state-of-charge estimate at a first time and receiving a second battery cell state-of-charge estimate at a second time subsequent to the first time, measuring an integrated battery cell current value indicative of the integrated battery cell current between the first time and the second time, updating at least one recursive parameter based on the first battery cell state-of-charge estimate, the second battery cell state-of-charge estimate, and the integrated battery cell current value, determining the estimated battery cell total capacity based on at least one recursive parameter, and storing a value corresponding to the estimated battery cell total capacity in a memory.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Applicant: AMERICAN ELECTRIC VEHICLES, INC.
    Inventor: Gregory L. Plett
  • Publication number: 20110130986
    Abstract: A system and method for maximizing a battery pack total energy metric indicative of a total energy of a battery pack is provided. The method includes receiving battery cell charge capacity estimates for all cells in the battery pack, composing battery pack configurations comprising subsets of the totality of battery cells, evaluating a battery pack energy metric for every battery pack configuration that is composed, selecting the battery pack configuration that has the maximum battery pack energy metric, and storing values indicative of the selected battery pack configuration in a memory.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Applicant: AMERICAN ELECTRIC VEHICLES, INC.
    Inventor: Gregory L. Plett
  • Publication number: 20110127960
    Abstract: A system and method for equalizing a battery pack during a battery pack charging process in accordance with an exemplary embodiment is provided. The method includes receiving total capacity estimates for all battery cells in the battery pack, and receiving state-of-charge estimates for all battery cells in the battery pack. The method further includes computing an equalization metric for all battery cells in the battery pack. The method further includes determining an equalization action for all battery cells in the battery pack, and initiating that equalization action. The method further includes executing a battery pack charging step.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Applicant: AMERICAN ELECTRIC VEHICLES, INC.
    Inventor: Gregory L. Plett
  • Patent number: 7893694
    Abstract: A system, a method, and an article of manufacture for determining an estimated combined battery state-parameter vector are provided. The method determines the estimated combined battery state-parameter vector based on a plurality of predicted combined battery state-parameter vectors, a plurality of predicted battery output vectors, and a battery output vector.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 22, 2011
    Assignee: LG Chem, Ltd.
    Inventor: Gregory L. Plett