Patents by Inventor Gregory P. Schmitz

Gregory P. Schmitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9814484
    Abstract: A bendable medical device such as for removing tissue from a subject is provided with a distal housing, an outer support tube, an inner drive tube, a coupler and a commutator portion. The coupler and commutator portion serve to axially constrain a distal end of the inner drive tube during bending, and to supply fluid for lubricating, cooling and irrigating the distal end of the device.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 14, 2017
    Assignee: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Gregory B. Arcenio, Ronald Leguidleguid, Juan Diego Perea
  • Publication number: 20170260636
    Abstract: A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
    Type: Application
    Filed: December 22, 2016
    Publication date: September 14, 2017
    Applicant: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Michael S. Lockard, Ming-Ting Wu, Eric C. Miller, Adam L. Cohen
  • Publication number: 20170095264
    Abstract: Methods and devices are provided for use in medical applications involving tissue removal. One exemplary powered scissors device includes a distal housing having a fixed cutting arm located thereon, an elongate member coupled to the distal housing and configured to introduce the distal housing to a target tissue site of the subject, a rotatable blade rotatably mounted to the distal housing, the rotatable blade having at least one cutting element configured to cooperate with the fixed arm to shear tissue therebetween, a crown gear located at a distal end of an inner drive tube, and a first spur gear configured to inter-engage with the crown gear and coupled with the rotatable blade to allow the crown gear to drive the rotatable blade.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 6, 2017
    Inventors: Gregory P. SCHMITZ, Ming-Ting WU, Eric C. Miller, Juan Diego PEREA
  • Patent number: 9567682
    Abstract: A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: February 14, 2017
    Assignee: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Michael S. Lockard, Ming-Ting Wu, Eric C. Miller, Adam L. Cohen
  • Publication number: 20170014148
    Abstract: Medical devices for shearing tissue into small pieces are provided. One exemplary device includes oppositely rotating first and second rotatable members, each located at least partially within a distal housing. The device also includes first and second circular axle portions, and first and second blades that are directly adjacent to one another and positioned to partially overlap such that tissue may be sheared between the first and second blades, between the first blade and the second axle portion and between the second blade and the first axle portion. The rotatable members are configured to engage tissue from a target tissue site with teeth of the first and second blades, rotate towards one another and inwardly to direct tissue from the target tissue site through a tissue engaging opening and into an interior portion of the distal housing. Methods of fabricating and using the above device are also disclosed.
    Type: Application
    Filed: September 27, 2016
    Publication date: January 19, 2017
    Inventors: Gregory P. SCHMITZ, Ming-Ting WU, Richard T. CHEN, Arun VEERAMANI
  • Publication number: 20170014142
    Abstract: Described herein are elongate devices for modifying tissue having a plurality of flexibly connected rungs or links, and methods of using them, including methods of using them to decompress stenotic spinal tissue. These devices may be included as part of a system for modifying tissue. In general, these devices include a plurality of blades positioned on (or formed from) rungs that are flexibly connected. The rungs are typically rigid, somewhat flat and wider than they are long (e.g., rectangular). The rungs may be arranged, ladder like, and may be connected by a flexible connector substrate or between two or more cables. Different sized rungs may be used. The blades (on the rungs) may be arranged in a staggered arrangement. A tissue-collection or tissue capture element may be used to collect the cut or modified tissue.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 19, 2017
    Applicant: Amendia, Inc.
    Inventors: Gregory P. Schmitz, Michael P. Wallace, Ronald Leguidleguid, Nestor C. Cantorna, James Shapiro, Jeffery L. Bleich
  • Patent number: 9463029
    Abstract: Described herein are elongate devices for modifying tissue having a plurality of flexibly connected rungs or links, and methods of using them, including methods of using them to decompress stenotic spinal tissue. These devices may be included as part of a system for modifying tissue. In general, these devices include a plurality of blades positioned on (or formed from) rungs that are flexibly connected. The rungs are typically rigid, somewhat flat and wider than they are long (e.g., rectangular). The rungs may be arranged, ladder like, and may be connected by a flexible connector substrate or between two or more cables. Different sized rungs may be used. The blades (on the rungs) may be arranged in a staggered arrangement. A tissue-collection or tissue capture element may be used to collect the cut or modified tissue.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: October 11, 2016
    Assignee: Amendia, Inc.
    Inventors: Gregory P. Schmitz, Michael P. Wallace, Ronald Leguidleguid, Nestor C. Cantorna, James Shapiro, Jeffery L. Bleich
  • Patent number: 9451977
    Abstract: Medical devices for shearing tissue into small pieces are provided. One exemplary device includes oppositely rotating first and second rotatable members, each located at least partially within a distal housing. The device also includes first and second circular axle portions, and first and second blades that are directly adjacent to one another and positioned to partially overlap such that tissue may be sheared between the first and second blades, between the first blade and the second axle portion and between the second blade and the first axle portion. The rotatable members are configured to engage tissue from a target tissue site with teeth of the first and second blades, rotate towards one another and inwardly to direct tissue from the target tissue site through a tissue engaging opening and into an interior portion of the distal housing. Methods of fabricating and using the above device are also disclosed.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 27, 2016
    Assignee: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Ming-Ting Wu, Richard T. Chen, Arun Veeramani
  • Publication number: 20160200073
    Abstract: A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Gregory P. Schmitz, Michael S. Lockard, Ming-Ting Wu, Eric C. Miller, Adam L. Cohen
  • Patent number: 9351741
    Abstract: A device for removing tissue from a patient may include an elongate flexible body having a proximal end, a distal end, and a longitudinal axis therebetween, the elongate body having opposed first and second major surfaces with a lateral orientation across the axis, and a plurality of blades distributed laterally across the first major surface. Each blade may have a first end adjacent the first surface and extending to a cantilevered second end, a first edge between the first and second ends of the blade being oriented toward the distal end of the elongate body, a second edge between the first and second ends of the blade being oriented toward the proximal end of the elongate body, a height of the blade between its first and second ends, and an axial length of the blade between its first and second edges.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 31, 2016
    Assignee: Amendia, Inc.
    Inventors: Gregory P. Schmitz, Jeffery L. Bleich, Steven A. Spisak, Roy Leguidleguid, Jefferey Bleam
  • Publication number: 20160135831
    Abstract: A medical device for removing tissue from a subject is provided with a distal housing, an elongate member, a first rotatable member and first and second tissue shearing edges. The distal housing is configured with at least one tissue engaging opening. The elongate member is coupled to the distal housing and configured to introduce the distal housing to a target tissue site. The first rotatable member is located at least partially within the distal housing. The first and second tissue shearing edges are configured to cooperate to shear tissue therebetween. The first rotatable member is configured to engage tissue from the target tissue site, rotate towards the second tissue shearing edge. A first axis of the first rotatable member is offset from the longitudinal axis of the elongate member, lies in a common plane and forms an angle therewith of between 0 and 90 degrees. Methods are also disclosed.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Gregory P. SCHMITZ, Juan Diego PEREA, Ming-Ting WU, Richard T. CHEN, Arun VEERAMANI
  • Patent number: 9320618
    Abstract: Described herein are methods and systems for precisely placing and/or manipulating devices within the body by first positioning a guidewire or pullwire. The device to be positioned within the body is coupled to the proximal end of the guidewire, and the device is pulled into the body by pulling on the distal end of the guidewire that extends from the body. The device may be bimanually manipulated by pulling the guidewire distally, and an attachment to a device that extends proximally, allowing control of both the proximal and the distal ends. In this manner devices (and particularly implants such as innerspinous distracters, stimulating leads, and disc slings) may be positioned and/or manipulated within the body. Guidewire exchange systems, devices and methods are also described. A guidewire may be exchanged between different surgical devices and may be releaseably or permanently coupled.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: April 26, 2016
    Assignee: Amendia, Inc.
    Inventors: Gregory P. Schmitz, Michael P. Wallace, Winnie Tang, Amie R. Borgstrom, Jeffery L. Bleich, Gregory B. Arcenio, Ronald Leguidleguid, Roy Leguidleguid, Jefferey Bleam
  • Patent number: 9290854
    Abstract: A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: March 22, 2016
    Assignee: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Michael S. Lockard, Ming-Ting Wu, Eric C. Miller, Adam L. Cohen
  • Publication number: 20150265336
    Abstract: A method for removing a volume of tissue from a tongue in a patient to treat sleep apnea may involve cutting tissue from the tongue using a tissue cutting device having a shaft and at least one moveable cutting member attached to the shaft at a distal end of the tissue cutting device and moving the cut tissue through a channel of the shaft in a direction from the distal end of the tissue cutting device toward a proximal end of the device. A device for removing a volume of tissue from a tongue in a patient to treat sleep apnea may include a shaft, at least one moveable cutting member disposed at a distal end of a distal tip of the shaft, a handle coupled with a proximal portion of the shaft, and an actuator.
    Type: Application
    Filed: November 20, 2013
    Publication date: September 24, 2015
    Inventors: Gregory P. Schmitz, Gregory B. Arcenio, Eric C. Miller
  • Publication number: 20150021190
    Abstract: A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Gregory P. SCHMITZ, Michael S. LOCKARD, Ming-Ting WU, Eric C. MILLER, Adam L. COHEN
  • Publication number: 20140350567
    Abstract: The present disclosure relates generally to the field of tissue removal and more particularly to methods and devices for use in medical applications involving selective tissue removal. One exemplary method includes the steps of providing a tissue cutting instrument capable of distinguishing between target tissue to be removed and non-target tissue, urging the instrument against the target tissue and the non-target tissue, and allowing the instrument to cut the target tissue while automatically avoiding cutting of non-target tissue. Various tools for carrying out this method are also described.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 27, 2014
    Inventors: Gregory P. SCHMITZ, Eric C. MILLER, Richard T. CHEN, Ming-Ting WU
  • Patent number: 8845637
    Abstract: A method and system for guiding at least a portion of a surgical device to a desired position between two tissues in a patient's body involves coupling a guidewire to the device and pulling the distal end of the guidewire to guide at least a portion of the surgical device to a desired position between the two tissues. The surgical device generally includes one or more guidewire coupling members and may comprise a tissue access device. A system may include a guidewire and a surgical device. In some embodiments, a guidewire, a tissue access device, and one or more additional devices to use with the access device may be provided. Methods, devices and systems may be used in open, less-invasive or percutaneous surgical procedures, in various embodiments.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: September 30, 2014
    Assignee: Baxano Surgical, Inc.
    Inventors: Gregory P. Schmitz, Jefferey Bleam, Roy Leguidleguid, Jeffery L. Bleich
  • Patent number: 8845639
    Abstract: Described herein are elongate devices for modifying tissue having a plurality of flexibly connected and rungs or links, and methods of using them, including methods of using them to decompress stenotic spinal tissue. These devices may be included as part of a system for modifying tissue. In general, these devices include a plurality of blades positioned on for formed from) rungs that are flexibly connected and may be separated by one or more spacers. The rungs are typically wider than they are long (e.g., rectangular). The rungs may be arranged, ladder like, and may be connected by a flexible connector substrate or between two or more cables. Different sized rungs may be used, or rungs with different cutting properties. In some variations the tissue modification devices may have a non-linear axial shape, or may be converted from a first axial shape to a second axial shape.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: September 30, 2014
    Assignee: Baxano Surgical, Inc.
    Inventors: Michael P. Wallace, Robert Garabedian, Gregory P. Schmitz, Jeffery L. Bleich, Nestor C. Cantorna, Ronald Leguidleguid, Roy Leguidleguid, Michael Sheinberg
  • Patent number: 8795278
    Abstract: The present disclosure relates generally to the field of tissue removal and more particularly to methods and devices for use in medical applications involving selective tissue removal. One exemplary method includes the steps of providing a tissue cutting instrument capable of distinguishing between target tissue to be removed and non-target tissue, urging the instrument against the target tissue and the non-target tissue, and allowing the instrument to cut the target tissue while automatically avoiding cutting of non-target tissue. Various tools for carrying out this method are also described.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: August 5, 2014
    Assignee: Microfabrica Inc.
    Inventors: Gregory P. Schmitz, Eric C. Miller, Richard T. Chen, Ming Ting Wu
  • Publication number: 20140180293
    Abstract: Described herein are elongate devices for modifying tissue having a plurality of flexibly connected rungs or links, and methods of using them, including methods of using them to decompress stenotic spinal tissue. These devices may be included as part of a system for modifying tissue. In general, these devices include a plurality of blades positioned on (or formed from) rungs that are flexibly connected. The rungs are typically rigid, somewhat flat and wider than they are long (e.g., rectangular). The rungs may be arranged, ladder like, and may be connected by a flexible connector substrate or between two or more cables. Different sized rungs may be used. The blades (on the rungs) may be arranged in a staggered arrangement. A tissue-collection or tissue capture element may be used to collect the cut or modified tissue.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Inventors: Gregory P. SCHMITZ, Michael P. WALLACE, Ronald LEGUIDLEGUID, Nestor C. CANTORNA, James SHAPIRO, Jeffery L. BLEICH