Patents by Inventor Gregory Parker Thiel

Gregory Parker Thiel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11465098
    Abstract: A feed of at least one of (a) a source liquid including a solvent with a dissolved impurity and (b) a retentate of the source liquid is pumped in a substantially closed loop through a liquid-separation module. The liquid-separation module includes a membrane that passes at least partially purified solvent to a permeate side of the membrane while diverting the impurity in a retentate on the retentate side of the membrane. The purified solvent is extracted from the permeate side of the membrane; and the retentate from the liquid-separation module is pumped to or through a pressurized reservoir with a variable volume for the feed component and recirculated as a component of the feed. Over time, the volume for the feed is reduced and the pressure applied to the feed in the reservoir is increased to balance against an increasing difference in osmotic pressure across the membrane.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 11, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: David Elan Martin Warsinger, John H. Lienhard, Emily Winona Tow, Ronan Killian McGovern, Gregory Parker Thiel
  • Publication number: 20190160431
    Abstract: A feed of at least one of (a) a source liquid including a solvent with a dissolved impurity and (b) a retentate of the source liquid is pumped in a substantially closed loop through a liquid-separation module. The liquid-separation module includes a membrane that passes at least partially purified solvent to a permeate side of the membrane while diverting the impurity in a retentate on the retentate side of the membrane. The purified solvent is extracted from the permeate side of the membrane; and the retentate from the liquid-separation module is pumped to or through a pressurized reservoir with a variable volume for the feed component and recirculated as a component of the feed. Over time, the volume for the feed is reduced and the pressure applied to the feed in the reservoir is increased to balance against an increasing difference in osmotic pressure across the membrane.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 30, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: David Elan Martin Warsinger, John H. Lienhard, Emily Winona Tow, Ronan Killian McGovern, Gregory Parker Thiel
  • Patent number: 10258926
    Abstract: A carrier gas and a combined feed liquid are directed through a humidifier, where water vaporizes from the combined feed liquid into the carrier gas, and through a dehumidifier, where the combined feed liquid cools the carrier gas to condense water from the carrier gas. At least a portion of the concentrated brine stream from the humidifier is directed through a pressure-retarded osmosis unit, while an initial feed solution is directed, in counter-flow, through the osmosis unit. Water from the initial feed solution flows through a membrane in the osmosis chamber into the concentrated brine stream to dilute and increase the volumetric flow rate of the brine stream. The diluted brine stream is extracted from the osmosis chamber and depressurized to produce power, while the concentrated initial feed solution is combined with the depressurized, diluted brine stream to form the combined feed liquid.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: April 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory Parker Thiel, Leonardo David Banchik, John H. Lienhard
  • Patent number: 10166510
    Abstract: A feed of at least one of (a) a source liquid including a solvent with a dissolved impurity and (b) a retentate of the source liquid is pumped in a substantially closed loop through a liquid-separation module. The liquid-separation module includes a membrane that passes at least partially purified solvent to a permeate side of the membrane while diverting the impurity in a retentate on the retentate side of the membrane. The purified solvent is extracted from the permeate side of the membrane; and the retentate from the liquid-separation module is pumped to or through a pressurized reservoir with a variable volume for the feed component and recirculated as a component of the feed. Over time, the volume for the feed is reduced and the pressure applied to the feed in the reservoir is increased to balance against an increasing difference in osmotic pressure across the membrane.
    Type: Grant
    Filed: November 13, 2016
    Date of Patent: January 1, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: David Elan Martin Warsinger, John H. Lienhard, V, Emily Winona Tow, Ronan Killian McGovern, Gregory Parker Thiel
  • Publication number: 20170239620
    Abstract: A feed of at least one of (a) a source liquid including a solvent with a dissolved impurity and (b) a retentate of the source liquid is pumped in a substantially closed loop through a liquid-separation module. The liquid-separation module includes a membrane that passes at least partially purified solvent to a permeate side of the membrane while diverting the impurity in a retentate on the retentate side of the membrane. The purified solvent is extracted from the permeate side of the membrane; and the retentate from the liquid-separation module is pumped to or through a pressurized reservoir with a variable volume for the feed component and recirculated as a component of the feed. Over time, the volume for the feed is reduced and the pressure applied to the feed in the reservoir is increased to balance against an increasing difference in osmotic pressure across the membrane.
    Type: Application
    Filed: November 13, 2016
    Publication date: August 24, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: David Elan Martin Warsinger, John H. Lienhard, V, Emily Winona Tow, Ronan Killian McGovern, Gregory Parker Thiel
  • Publication number: 20160229714
    Abstract: A carrier gas and a combined feed liquid are directed through a humidifier, where water vaporizes from the combined feed liquid into the carrier gas, and through a dehumidifier, where the combined feed liquid cools the carrier gas to condense water from the carrier gas. At least a portion of the concentrated brine stream from the humidifier is directed through a pressure-retarded osmosis unit, while an initial feed solution is directed, in counter-flow, through the osmosis unit. Water from the initial feed solution flows through a membrane in the osmosis chamber into the concentrated brine stream to dilute and increase the volumetric flow rate of the brine stream. The diluted brine stream is extracted from the osmosis chamber and depressurized to produce power, while the concentrated initial feed solution is combined with the depressurized, diluted brine stream to form the combined feed liquid.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 11, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Gregory Parker Thiel, Leonardo David Banchik, John H. Lienhard