Patents by Inventor Gregory R. Basile

Gregory R. Basile has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230233295
    Abstract: An intra-oral scanning device includes a light source and an optical system, and communicates with a display system. The device has a reduced form factor as compared to prior devices, and it provides for more efficient transmission and capture of images.
    Type: Application
    Filed: April 3, 2023
    Publication date: July 27, 2023
    Inventors: Ye Li, Gregory R. Basile, Rod A. Duncan, Justin G. Graham, Grant E. Kenworthy, Henley S. Quadling, Mark S. Quadling, Andrei Tchouprakov, Lasse H. Toimela
  • Patent number: 11648095
    Abstract: An intra-oral scanning device includes a light source and an optical system, and communicates with a display system. The device has a reduced form factor as compared to prior devices, and it provides for more efficient transmission and capture of images.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: May 16, 2023
    Assignee: D4D Technologies, LLC
    Inventors: Ye Li, Gregory R. Basile, Rod A. Duncan, Justin G. Graham, Grant E. Kenworthy, Henley S. Quadling, Mark S. Quadling, Andrei Tchouprakov, Lasse H. Toimela
  • Publication number: 20190046302
    Abstract: An intra-oral scanning device includes a light source and an optical system, and communicates with a display system. The device has a reduced form factor as compared to prior devices, and it provides for more efficient transmission and capture of images.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 14, 2019
    Inventors: Ye Li, Gregory R. Basile, Rod A. Duncan, Justin G. Graham, Grant E. Kenworthy, Henley S. Quadling, Mark S. Quadling, Andrei Tchouprakov, Lasse H. Toimela
  • Patent number: 8446349
    Abstract: A method and system for controlling deformable micromirror devices are provided. In accordance with one embodiment of the present disclosure, a display system includes multiple deformable micromirror devices, a buffer, and a controller. Each deformable micromirror device includes a plurality of micromirrors. The buffer is communicatively coupled, at a first interface speed, to each deformable micromirror device. The buffer is operable to communicate in parallel with the deformable micromirror devices. The controller is communicatively coupled, at a second interface speed, to the buffer. The controller is operable to receive a display input and, in response, generate a plurality signals each corresponding to an optical characteristic of the display input. The controller is further operable to sequentially communicate each of the plurality of signals through the buffer to a corresponding one of the deformable micromirror devices.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: May 21, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Sue Hui, Larry D. Dickinson, Gregory R. Basile, James A. Strain, Patrick C. Neil
  • Patent number: 7664289
    Abstract: Methods and apparatus for analyzing nonoperational data acquired from optical discs, and in particular, trackable optical discs having concurrently readable nonoperational structures are provided. Analysis can involve identifying patterns in the data that reproducibly distinguish underlying structures, or identifying patterns in the data that report physical properties of the nonoperational structures. When an optical disc has a plurality of physically nonidentical concurrently readable nonoperational structures, analysis can involve identifying patterns in the data that distinguish among the physically nonidentical nonoperational structures. Also, relative physical locations of nonoperational structures on the disc can be calculated. A system for remotely analyzing data in order to expedite complex data analysis and reporting the results thereof is also provided.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: February 16, 2010
    Assignee: Vindur Technologies, Inc.
    Inventors: Mark O. Worthington, Gregory R. Basile
  • Publication number: 20090135314
    Abstract: A method and system for controlling deformable micromirror devices are provided. In accordance with one embodiment of the present disclosure, a display system includes multiple deformable micromirror devices, a buffer, and a controller. Each deformable micromirror device includes a plurality of micromirrors. The buffer is communicatively coupled, at a first interface speed, to each deformable micromirror device. The buffer is operable to communicate in parallel with the deformable micromirror devices. The controller is communicatively coupled, at a second interface speed, to the buffer. The controller is operable to receive a display input and, in response, generate a plurality signals each corresponding to an optical characteristic of the display input. The controller is further operable to sequentially communicate each of the plurality of signals through the buffer to a corresponding one of the deformable micromirror devices.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Sue Hui, Larry D. Dickinson, Gregory R. Basile, James A. Strain, Patrick C. Neil
  • Patent number: 7088650
    Abstract: Methods and apparatus for using physical synchronization markers during optical disc data acquisition are provided. In accordance with this invention, physical synchronization markers on optical discs and/or disc covers can be used to determine absolute and/or relative positions on the disc or cover and control data acquisition. A method for acquiring data includes detecting at least one physical synchronization marker and reading data in response to detecting the marker.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: August 8, 2006
    Inventors: Mark O. Worthington, Gregory R. Basile, James R. Norton
  • Patent number: 6888951
    Abstract: Methods and apparatus for analyzing nonoperational data acquired from optical discs, and in particular, trackable optical discs having concurrently readable nonoperational structures are provided. Analysis can involve identifying patterns in the data that reproducibly distinguish underlying structures, or identifying patterns in the data that report physical properties of the nonoperational structures. When an optical disc has a plurality of physically nonidentical concurrently readable nonoperational structures, analysis can involve identifying patterns in the data that distinguish among the physically nonidentical nonoperational structures. Also, relative physical locations of nonoperational structures on the disc can be calculated. A system for remotely analyzing data in order to expedite complex data analysis and reporting the results thereof is also provided.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: May 3, 2005
    Assignees: Nagaoka & Co., Ltd., Burstein Technologies, Inc.
    Inventors: Mark O. Worthington, Gregory R. Basile