Patents by Inventor Gregory R. Prinzbach

Gregory R. Prinzbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11225433
    Abstract: A sintered machinable glass-ceramic is provided. The machinable glass-ceramic is formed by mixing phyllosilicate material having a sheet structure, with a glass fit and firing the mixture at relatively low temperatures to sinter the phyllosilicate, while maintaining the sheet-like morphology of the phyllosilicate and its associated cleaving properties. The sintered machinable glass-ceramic can be machined with conventional metal working tools and includes the electrical properties of the phyllosilicate. Producing the sintered machinable glass-ceramic does not require the relatively high-temperature bulk nucleation and crystallization needed to form sheet phyllosilicate phases in situ.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 18, 2022
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, George E. Sakoske, John J. Maloney, Cody Gleason, Gregory R. Prinzbach, Bradford Smith, Chih Cheng Wang
  • Patent number: 10370290
    Abstract: A passivation glass coating composition is provided for forming a fired passivation glass layer on a semiconductor substrate having p-n junction. The passivation glass coating composition includes a glass component that is lead free, cadmium free, alkali metal oxides free, and colored transition metal oxides (i.e. metal oxides of V, Fe, Co, Ni, Cr, Cu, Mn) free. The glass component includes bismuth based glasses, and provides a firing temperature range of 500° C. to 900° C., and controlled devitrification. Once fired to a semiconductor device, the fired passivation glass layer provides exceptional device performance including no cracking of the fired passivation glass layer, excellent thermal expansion matching to silicon, good chemical resistance to acid and base, and improved device performance.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: August 6, 2019
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, John J. Maloney, George E. Sakoske, Gregory R. Prinzbach, David Widlewski, Jackie Davis, Bradford Smith
  • Publication number: 20190055155
    Abstract: A passivation glass coating composition is provided for forming a fired passivation glass layer on a semiconductor substrate having p-n junction. The passivation glass coating composition includes a glass component that is lead free, cadmium free, alkali metal oxides free, and colored transition metal oxides (i.e. metal oxides of V, Fe, Co, Ni, Cr, Cu, Mn) free. The glass component includes bismuth based glasses, and provides a firing temperature range of 500° C. to 900° C., and controlled devitrification. Once fired to a semiconductor device, the fired passivation glass layer provides exceptional device performance including no cracking of the fired passivation glass layer, excellent thermal expansion matching to silicon, good chemical resistance to acid and base, and improved device performance.
    Type: Application
    Filed: May 3, 2017
    Publication date: February 21, 2019
    Inventors: Srinivasan Sridharan, John J. Maloney, George E. Sakoske, Gregory R. Prinzbach, David Widlewski, Jackie Davis, Bradford Smith
  • Publication number: 20180186687
    Abstract: A sintered machinable glass-ceramic is provided. The machinable glass-ceramic is formed by mixing phyllosilicate material having a sheet structure, with a glass fit and firing the mixture at relatively low temperatures to sinter the phyllosilicate, while maintaining the sheet-like morphology of the phyllosilicate and its associated cleaving properties. The sintered machinable glass-ceramic can be machined with conventional metal working tools and includes the electrical properties of the phyllosilicate. Producing the sintered machinable glass-ceramic does not require the relatively high-temperature bulk nucleation and crystallization needed to form sheet phyllosilicate phases in situ.
    Type: Application
    Filed: December 2, 2016
    Publication date: July 5, 2018
    Inventors: Srinivasan Sridharan, George E. Sakoske, John J. Maloney, Cody Gleason, Gregory R. Prinzbach, Bradford Smith, Chih Cheng Wang
  • Patent number: 9969648
    Abstract: A method of sealing at least two inorganic substrates together using an induction energy source comprising applying to at least one of the substrates a paste composition including a glass frit, and an induction coupling additive, bringing at least a second substrate into contact with the paste composition, and subjecting the substrates and paste to induction heating, thereby forming a hermetic seal between the two inorganic substrates.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: May 15, 2018
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, George E. Sakoske, Chandrashekhar S. Khadilkar, Gregory R. Prinzbach, John J. Maloney
  • Patent number: 9892853
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 13, 2018
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, Jr., George E. Sakoske
  • Patent number: 9871176
    Abstract: The glass composites include glass frit, that when sintered produce a phosphor-containing layer, suitable for use in optical applications. The glass composites can include a crystallizing glass frit, such that phosphor crystals precipitate from the frit composite during sintering, or can include a non-crystallizing glass composition, such that phosphor is added to the frit composite before sintering. The sintering temperatures of the glass are relatively low so that fluorescence of the phosphors will not substantially degrade during sintering. The resulting phosphor-containing layer can be used in various optical applications including those for converting blue light into various color temperatures of white light.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: January 16, 2018
    Assignee: Ferro Corporation
    Inventors: John J. Maloney, Srinivasan Sridharan, Jackie D. Davis, Gregory R. Prinzbach, George E. Sakoske
  • Publication number: 20170110246
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Application
    Filed: June 12, 2015
    Publication date: April 20, 2017
    Inventors: Walter J. Symes, JR., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, JR., George E. Sakoske
  • Publication number: 20160225966
    Abstract: The glass composites include glass frit, that when sintered produce a phosphor-containing layer, suitable for use in optical applications. The glass composites can include a crystallizing glass frit, such that phosphor crystals precipitate from the frit composite during sintering, or can include a non-crystallizing glass composition, such that phosphor is added to the frit composite before sintering. The sintering temperatures of the glass are relatively low so that fluorescence of the phosphors will not substantially degrade during sintering. The resulting phosphor-containing layer can be used in various optical applications including those for converting blue light into various color temperatures of white light.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 4, 2016
    Inventors: John J. Maloney, Srinivasan Sridharan, Jackie D. Davis, Gregory R. Prinzbach, George E. Sakoske
  • Publication number: 20140299256
    Abstract: A method of sealing at least two inorganic substrates together using an induction energy source comprising applying to at least one of the substrates a paste composition including a glass frit, and an induction coupling additive, bringing at least a second substrate into contact with the paste composition, and subjecting the substrates and paste to induction heating, thereby forming a hermetic seal between the two inorganic substrates.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 9, 2014
    Applicant: FERRO CORPORATION
    Inventors: Srinivasan Sridharan, George E. Sakoske, Chandrashekhar S. Khadilkar, Gregory R. Prinzbach, John J. Maloney
  • Publication number: 20140261975
    Abstract: A frit-based hermetic sealing system for sealing glass plates to one another, or sealing glass to ceramics is disclosed. Seal materials, the methods to apply these seal materials, and the seal designs for selective and controlled absorption of microwave energy to heat and seal the system are presented. The hermetic seals are useful in various applications such as (a) encapsulating solar cells based on silicon, organic systems, and thin film, (b) encapsulating other electronic devices such as organic LEDs, (c) producing Vacuum Insulated Glass windows, and (d) architectural windows and automotive glass.
    Type: Application
    Filed: November 1, 2012
    Publication date: September 18, 2014
    Inventors: Srinivasan Sridharan, John J. Maloney, Chandrashekhar S. Khadilkar, Robert P. Blonski, Gregory R. Prinzbach, George E. Sakoske