Patents by Inventor Gregory S. Day

Gregory S. Day has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180162973
    Abstract: This invention relates to a process to polymerize olefins, particularly to produce ethylene polymers with internal unsaturation structures.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 14, 2018
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Xuan Ye, David F. Sanders, Gregory S. Day, Sarah J. Mattler
  • Patent number: 9994657
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 12, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Michelle E. Titone, Machteld M. W. Mertens, Gerardo J. Majano Sanchez
  • Patent number: 9994658
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 12, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Patent number: 9988410
    Abstract: This invention relates to novel bridged bis indenyl metallocene catalyst compounds where the bridge is —((R15*)2Si—Si(R15)2)— wherein, each R15 and R15* is identical or different and is a substituted or unsubstituted, branched or unbranched C1-C20 alkyl group, preferably each R15 together do not form a ring, and/or each R15* together do not form a ring, and/or R15 and R15* together do not form a ring. This invention also relates to polymerization processes to produce polymer and to polymer compositions produced by the methods described.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: June 5, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jian Yang, Matthew W. Holtcamp, Gregory S. Day, Xiongdong Lian, Xuan Ye
  • Patent number: 9982076
    Abstract: A catalyst system including the reaction product of a fluorided support, an activator, and at least a first transition metal catalyst compound; methods of making such catalyst systems, polymerization processes using such catalyst systems, and polymers made therefrom.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: May 29, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xuan Ye, Crisita Carmen H. Atienza, Matthew W. Holtcamp, David F. Sanders, Gregory S. Day, Michelle E. Titone, David A. Cano, Matthew S. Bedoya
  • Patent number: 9982067
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a pyridyldiamido compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 29, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, John R. Hagadorn, Gregory S. Day, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Publication number: 20180118860
    Abstract: This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes a pyridyldiamido transition metal complex, a metallocene compound, a support material and, optionally, an activator. The catalyst system may be used for preparing multi-modal polyolefins.
    Type: Application
    Filed: March 10, 2016
    Publication date: May 3, 2018
    Inventors: Xuan YE, John R. HAGADORN, Matthew W. HOLTCAMP, Gregory S. DAY, David F. SANDERS, Carlos R. LOPEZ-BARRON
  • Patent number: 9944665
    Abstract: The invention relates to a novel group bridged metallocene transition metal complexes, wherein the complex includes at least one indenyl ligand substituted at the 4-position with a phenyl group, the 4-phenyl group being preferably substituted at the 3?, 4?, and 5? positions with particular combinations of substituents, particularly wherein the 4?-substituent is a group of the formula (XR?n)?, wherein X is a Group 14-17 heteroatom having an atomic weight of 13 to 79 and R? is one of a hydrogen atom, halogen atom, a C1-C10 alkyl group, or a C6-C10 aryl group and n is 0, 1, 2, or 3. Catalyst systems including the transition metal complex, polymerization processes using the transition metal complex, and polymers made using the transition metal complex are also described.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 17, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jian Yang, Matthew W. Holtcamp, Xiongdong Lian, Gregory S. Day
  • Publication number: 20180086859
    Abstract: This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes a pyridyldiamido transition metal complex, an activator and a support material. The catalyst system may be used for preparing ultrahigh molecular weight polyolefins.
    Type: Application
    Filed: March 10, 2016
    Publication date: March 29, 2018
    Inventors: Xuan Ye, John R. Hagadorn, Matthew W. Holtcamp, Gregory S. Day, David F. Sanders
  • Patent number: 9926396
    Abstract: This invention relates to a process to polymerize olefins, particularly to produce ethylene polymers with internal unsaturation structures.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 27, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Xuan Ye, David F. Sanders, Gregory S. Day, Sarah J. Mattler
  • Patent number: 9920176
    Abstract: This invention relates to catalyst supports having high surface area (SA?400 m2/g), low pore volume (PV?2 mL/g), a specific mean pore diameter range (PD=1-20 nm), and high average particle size (PS?30 ?m), supported catalysts, and supportation processes; and further relates to: high porosity (?15%) and/or low pore diameter (PD<165 ?m) propylene polymers; bimodal polymers and/or heterophasic copolymers based on the high porosity and/or low pore diameter propylene polymers; propylene polymerization processes using the supported catalysts and/or to prepare the high porosity and/or low pore diameter propylene polymers, bimodal polymers and/or heterophasic copolymers.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 20, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Lubin Luo, Gregory S. Day, Jian Yang, Matthew W. Holtcamp
  • Publication number: 20180072823
    Abstract: This invention relates to a catalyst system including fluorided silica, alkylalumoxane activator and a bridged monocyclopentadienyl group 4 transition metal compound, where the fluorided support has not been calcined at a temperature of 400° C. or more, and is preferably, produced using a wet mix method, particularly an aqueous method.
    Type: Application
    Filed: March 10, 2016
    Publication date: March 15, 2018
    Inventors: Xuan Ye, Matthew W. Holtcamp, Laughlin G. McCullough, Jo Ann M. Canich, David F. Sanders, Gregory S. Day, Michelle E. Titone
  • Publication number: 20180022843
    Abstract: This invention relates to high porosity (?15%) and/or low pore diameter (PD<165 ?m) propylene polymers and propylene polymerization processes using single site catalyst systems with supports having high surface area (SA?400 m2/g), low pore volume (PV?2 mL/g), a specific mean pore diameter range (PD=1-20 nm), and high average particle size (PS?30 ?m).
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Inventors: Lubin Luo, Matthew W. Holtcamp, Gregory S. Day
  • Publication number: 20170327604
    Abstract: A catalyst system comprising a combination of: 1) an activator; 2) one or more metallocene catalyst compounds; 3) a support comprising an organosilica material, which is a mesoporous organosilica material. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2 SiCh2]3(i), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silic-on atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 salkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 12, 2015
    Publication date: November 16, 2017
    Inventors: Matthew W. HOLTCAMP, Gregory S. DAY, David F. SANDERS, David C. CALABRO, Quanchang LI, Machteld M.W. MERTENS
  • Patent number: 9809664
    Abstract: This invention relates to high porosity (?15%) and/or low pore diameter (PD<165 ?m) propylene polymers and propylene polymerization processes using single site catalyst systems with supports having high surface area (SA?400 m2/g), low pore volume (PV?2 mL/g), a specific mean pore diameter range (PD=1-20 nm), and high average particle size (PS?30 ?m).
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: November 7, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luo Lubin, Matthew W. Holtcamp, Gregory S. Day
  • Publication number: 20170313799
    Abstract: This invention relates to organoaluminum activators, organoaluminum activator systems, preferably supported, to polymerization catalyst systems containing these activator systems and to polymerization processes utilizing the same. In particular, this invention relates to catalyst systems comprising an ion-exchange layered silicate, an organoaluminum activator, and a metallocene.
    Type: Application
    Filed: March 20, 2017
    Publication date: November 2, 2017
    Inventors: Matthew W. Holtcamp, Gregory S. Day
  • Publication number: 20170306136
    Abstract: This invention relates to heterophasic copolymers of propylene and an alpha olefin comonomer having a high fill phase content (?15%), and heterophasic polymerization processes using a single site catalyst system with a support having high average particle size (PS?30 ?m), high surface area (SA?400 m2/g), low pore volume (PV?2 mL/g), and a mean pore diameter range of 1?PD?20 nm.
    Type: Application
    Filed: July 7, 2017
    Publication date: October 26, 2017
    Inventors: Lubin Luo, Gregory S. Day, Matthew W. Holtcamp
  • Patent number: 9745390
    Abstract: This invention relates to a novel group 2, 3 or 4 transition metal metallocene catalyst compound that is asymmetric having two non-identical indenyl ligands with substitution at R2 having a branched or unbranched C1-C20 alkyl group substituted with a cyclic group or a cyclic group, R8 is an alkyl group and R4 and R10 are substituted phenyl groups.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: August 29, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jian Yang, Matthew W. Holtcamp, Garth R. Giesbrecht, Gregory S. Day
  • Patent number: 9738779
    Abstract: This invention relates to heterophasic copolymers of propylene and an alpha olefin comonomer having a high fill phase content (?15%), and heterophasic polymerization processes using a single site catalyst system with a support having high average particle size (PS?30 ?m), high surface area (SA?400 m2/g), low pore volume (PV?2 mL/g), and a mean pore diameter range of 1?PD?20 nm.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 22, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Lubin Luo, Gregory S. Day, Matthew W. Holtcamp
  • Patent number: 9725537
    Abstract: This invention relates to single site catalyst supportation methods involving high temperature treatment (?40° C., e.g., 100-130° C.) to improve catalyst activity for olefin polymerization, e.g., propylene polymerization, and to the supported catalyst systems obtained by the methods, e.g., single site catalyst systems supported on a support having high average particle size (PS?30 ?m), high surface area (SA?200 m2/g), low pore volume (PV?2 mL/g), and a mean pore diameter range of 1?PD?20 nm.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 8, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Lubin Luo, Gregory S. Day