Patents by Inventor Gregory S. Rawlins

Gregory S. Rawlins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8271223
    Abstract: The present invention is related to multi-dimensional error definition, error measurement, error analysis, error function generation, error information optimization, and error correction for communication systems. Novel techniques are provided that can be applied to a myriad of applications for which an input to output transfer characteristic must be corrected or linearized. According to embodiments of the present invention, error can be described, processed, and geometrically interpreted. Compact formulations of error correction and calibration functions can be generated according to the present invention, which reduce memory requirements as well as computational time.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 18, 2012
    Assignee: ParkerVision, Inc.
    Inventors: Gregory S. Rawlins, David F. Sorrells
  • Patent number: 8238847
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: August 7, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8233858
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 31, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8229023
    Abstract: Frequency translation and applications of the same are described herein, including RF modem and wireless local area network (WLAN) applications. In embodiments, the WLAN invention includes an antenna, an LNA/PA module, a receiver, a transmitter, a control signal generator, a demodulation/modulation facilitation module, and a MAC interface. The WLAN receiver includes at least one universal frequency translation module that frequency down-converts a received EM signal. In embodiments, the UFT based receiver is configured in a multi-phase embodiment to reduce or eliminate re-radiation that is caused by DC offset. The WLAN transmitter includes at least one universal frequency translation module that frequency up-converts a baseband signal in preparation for transmission over the wireless LAN. In embodiments, the UFT based transmitter is configured in a differential and multi-phase embodiment to reduce carrier insertion and spectral growth.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: July 24, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8224281
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 17, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Patent number: 8223898
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: July 17, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120114078
    Abstract: A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Application
    Filed: December 12, 2011
    Publication date: May 10, 2012
    Applicant: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120105154
    Abstract: Methods and systems for enhancing system efficiency in a power amplification, modulation, and transmission system are provided. Embodiments include determining output power characteristics of a selected modulation scheme to be employed in data transmission, determining a most probable output power point of operation for the selected modulation scheme based on the output power characteristics, and controlling the output stage power supply of the system to operate at substantially optimal efficiency at the most probable output power point of operation.
    Type: Application
    Filed: January 10, 2012
    Publication date: May 3, 2012
    Applicant: ParkerVision, Inc.
    Inventors: Gregory S. SILVER, David F. SORRELLS, Gregory S. RAWLINS
  • Publication number: 20120087445
    Abstract: A circuit is provided comprising detector circuitry, calculating circuitry, and determining circuitry. The detector circuitry is figured to generate an I data signal magnitude value of a sampled I data signal and a Q data signal magnitude value of a sampled Q data signal. The calculating circuitry is configured to calculate a phase shift angle ?I between first and second equal and constant or substantially equal and constant envelope constituents of the sampled I data signal and to calculate a phase shift angle ?Q between first and second substantially equal and substantially constant envelope constituents of the sampled Q data signal. The determining circuitry is configured to determine in-phase and quadrature amplitude information of the substantially equal and substantially constant envelope constituents of the sampled I signal and to determine in-phase and quadrature amplitude information of the first and second substantially equal and substantially constant envelope constituents of the sampled Q signal.
    Type: Application
    Filed: December 15, 2011
    Publication date: April 12, 2012
    Applicant: Parker Vision, Inc.
    Inventors: David F. SORELLS, Gregory S. RAWLINS, Michael W. RAWLINS
  • Patent number: 8116704
    Abstract: Methods and systems for enhancing system efficiency in a power amplification, modulation, and transmission system are provided. Embodiments include determining output power characteristics of a selected modulation scheme to be employed in data transmission, determining a most probable output power point of operation for the selected modulation scheme based on the output power characteristics, and controlling the output stage power supply of the system to operate at substantially optimal efficiency at the most probable output power point of operation.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: February 14, 2012
    Assignee: ParkerVision, Inc.
    Inventors: Gregory S. Silver, David F. Sorrells, Gregory S. Rawlins
  • Publication number: 20120025906
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: October 7, 2011
    Publication date: February 2, 2012
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8077797
    Abstract: A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: December 13, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8059749
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 15, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8050353
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 1, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8036306
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: October 11, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8036304
    Abstract: A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 11, 2011
    Assignee: Parkervision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8031804
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: October 4, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8026764
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: September 27, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8013675
    Abstract: Multiple-Input-Single-Output (MISO) amplification and associated VPA control algorithms are provided herein. According to embodiments of the present invention, MISO amplifiers driven by VPA control algorithms outperform conventional outphasing amplifiers, including cascades of separate branch amplifiers using conventional power combiner technologies. MISO amplifiers can be operated at enhanced efficiencies over the entire output power dynamic range by blending the control of the power source, source impedances, bias levels, outphasing, and branch amplitudes. These blending constituents are combined to provide an optimized transfer characteristic function.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: September 6, 2011
    Assignee: ParkerVision, Inc.
    Inventors: Gregory S. Rawlins, David F. Sorrells
  • Publication number: 20110194648
    Abstract: Frequency translation and applications of the same are described herein, including RF modem and wireless local area network (WLAN) applications. In embodiments, the WLAN invention includes an antenna, an LNA/PA module, a receiver, a transmitter, a control signal generator, a demodulation/modulation facilitation module, and a MAC interface. The WLAN receiver includes at least one universal frequency translation module that frequency down-converts a received EM signal. In embodiments, the UFT based receiver is configured in a multi-phase embodiment to reduce or eliminate re-radiation that is caused by DC offset. The WLAN transmitter includes at least one universal frequency translation module that frequency up-converts a baseband signal in preparation for transmission over the wireless LAN. In embodiments, the UFT based transmitter is configured in a differential and multi-phase embodiment to reduce carrier insertion and spectral growth.
    Type: Application
    Filed: April 19, 2011
    Publication date: August 11, 2011
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins