Patents by Inventor Gregory Steven Pope

Gregory Steven Pope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11601103
    Abstract: A method for controlling gain of a line amplifier on a cable, the method comprising selecting an unused carrier frequency; transmitting a pulsed pilot signal on the unused carrier frequency into the cable; determining a pilot signal output strength by measuring signal strength of the pilot signal after amplification by the line amplifier; comparing the pilot signal output strength with a target signal strength to determine a difference; and adjusting the gain of the line amplifier corresponding to the difference.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: March 7, 2023
    Assignee: RF Industries Pty Ltd
    Inventors: Christopher John Snell, Gregory Steven Pope
  • Publication number: 20210058048
    Abstract: A method for controlling gain of a line amplifier on a cable, the method comprising selecting an unused carrier frequency; transmitting a pulsed pilot signal on the unused carrier frequency into the cable; determining a pilot signal output strength by measuring signal strength of the pilot signal after amplification by the line amplifier; comparing the pilot signal output strength with a target signal strength to determine a difference; and adjusting the gain of the line amplifier corresponding to the difference.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Applicant: RF Industries Pty Ltd
    Inventors: Christopher John SNELL, Gregory Steven POPE
  • Patent number: 9297893
    Abstract: An antenna system including: an input port configured to receive tracking mode signals, in two orthogonal polarizations, from a target; a tracking coupler, configured to receive the tracking mode signals from the input port, the tracking coupler including: a first pair of opposed slot couplers configured to extract tracking signals from the tracking mode signals in a first one of the orthogonal polarizations, and a second pair of opposed slot couplers configured to extract tracking signals from the tracking mode signals in a second one of the orthogonal polarizations; and a tracking combiner network configured to combine the extracted tracking signals from the pairs of opposed slot couplers to generate tracking output signals for use in controlling the antenna system to track the target.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: March 29, 2016
    Assignee: BAE SYSTEMS AUSTRALIA LIMITED
    Inventors: Christophe Jean-Marc Granet, John Seward Kot, Ian Maxwell Davis, Gregory Steven Pope
  • Patent number: 8718483
    Abstract: A deployable photonic link including a deployable length of optical fiber and an interface module fusion spliced to at least one end of the optical fiber so that the module is directly connected to the fiber. The interface module including at least one of: an input for receiving a first electrical signal including a first radio frequency (RF) signal component; and an output for outputting a second RF signal component. The interface module further including, respectively, at least one of: a device for receiving the first electrical signal from the input and for producing an optical signal modulated with the first RF signal component for transmission in the optical fiber; and a device for receiving a modulated optical signal and for producing therefrom the second RF signal component for output at the output. An interface module may also contain both the input and the output and the devices for receiving RF signals and for receiving modulated optical signals.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: May 6, 2014
    Assignee: BAE Systems Australia Ltd
    Inventors: Ian Bradbury, Gregory Steven Pope, Graham Howard Zacher
  • Publication number: 20130307719
    Abstract: An antenna system including: an input port configured to receive tracking mode signals, in two orthogonal polarisations, from a target; a tracking coupler, configured to receive the tracking mode signals from the input port, the tracking coupler including: a first pair of opposed slot couplers configured to extract tracking signals from the tracking mode signals in a first one of the orthogonal polarisations, and a second pair of opposed slot couplers configured to extract tracking signals from the tracking mode signals in a second one of the orthogonal polarisations; and a tracking combiner network configured to combine the extracted tracking signals from the pairs of opposed slot couplers to generate tracking output signals for use in controlling the antenna system to track the target.
    Type: Application
    Filed: November 8, 2011
    Publication date: November 21, 2013
    Applicant: BAE SYSTEM AUSTRALIA LIMITED
    Inventors: Christophe Jean-Marc Granet, John Seward Kot, Ian Maxwell Davis, Gregory Steven Pope
  • Publication number: 20120039610
    Abstract: A deployable photonic link including a deployable length of optical fiber and an interface module fusion spliced to at least one end of the optical fiber so that the module is directly connected to the fiber. The interface module including at least one of: an input for receiving a first electrical signal including a first radio frequency (RF) signal component; and an output for outputting a second RF signal component. The interface module further including, respectively, at least one of: a device for receiving the first electrical signal from the input and for producing an optical signal modulated with the first RF signal component for transmission in the optical fiber; and a device for receiving a modulated optical signal and for producing therefrom the second RF signal component for output at the output. An interface module may also contain both the input and the output and the devices for receiving RF signals and for receiving modulated optical signals.
    Type: Application
    Filed: October 31, 2008
    Publication date: February 16, 2012
    Inventors: Ian Bradbury, Gregory Steven Pope, Graham Howard Zacher