Patents by Inventor Gregory T. A. Kovacs

Gregory T. A. Kovacs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8029733
    Abstract: A reaction vessel having a reaction chamber for holding a sample is fabricated by producing a housing having a rigid frame defining the minor walls of the chamber. The housing also defines a port for introducing fluid into the chamber. At least one sheet or film is attached to the rigid frame to form at least one major wall of the chamber. In preferred embodiments, two sheets or films are attached to opposite sides of the rigid frame to form two opposing major walls of the chamber, the major walls being connected to each other by the minor walls.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 4, 2011
    Assignee: Cepheid
    Inventors: Ronald Chang, Lee A. Christel, Gregory T. A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi, Steven J. Young, Robert Yuan, Douglas B. Dority
  • Patent number: 7993906
    Abstract: The present invention provides a sensitive system for measuring the physiological response of an in-vitro cell culture to an environmental parameter. An electrical property of the cell culture is measured as a control signal, and a parameter of a stimulus is adjusted in real time to maintain the control signal at a specified value as the environment of the cell culture is altered, for example, pharmacologically. Artifact reduction and real-time control methods are two key aspects of preferred embodiments of the invention, and enable highly accurate determination of pulse parameters which elicit a desired response. Both aspects must be highly robust to the natural variations inherent in a biological system. This system is beneficial for studying the effects of environmental alterations because extremely small changes in the physiological response can be measured over time, revealing the magnitude and time-dependence of the impact of these alterations on the cell culture.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: August 9, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gregory T. A. Kovacs, R. Hollis Whittington
  • Publication number: 20110165562
    Abstract: An analyte is separated from a fluid sample by introducing the sample into a cartridge having a sample port and a first flow path extending from the sample port. The first flow path includes an extraction chamber containing a solid support for capturing the analyte from the sample. The cartridge has a second flow path for eluting the captured analyte from the extraction chamber, the second flow diverging from the first flow path after passing through the extraction chamber. The sample is forced to flow through the extraction chamber and into a waste chamber, thereby capturing the analyte with the solid support as the sample flows through the extraction chamber. The captured analyte is then eluted from the extraction chamber by forcing an elution fluid to flow through the extraction chamber and along the second flow path.
    Type: Application
    Filed: March 7, 2011
    Publication date: July 7, 2011
    Inventors: Farzad Pourahmadi, William A. McMillan, Jesus Ching, Ronald Chang, Lee A. Christel, Gregory T.A. Kovacs, M. Allen Northrup, Kurt E. Petersen
  • Patent number: 7914994
    Abstract: An analyte is separated from a fluid sample by introducing the sample into a cartridge having a sample port and a first flow path extending from the sample port. The first flow path includes an extraction chamber containing a solid support for capturing the analyte from the sample. The cartridge has a second flow path for eluting the captured analyte from the extraction chamber, the second flow diverging from the first flow path after passing through the extraction chamber. The sample is forced to flow through the extraction chamber and into a waste chamber, thereby capturing the analyte with the solid support as the sample flows through the extraction chamber. The captured analyte is then eluted from the extraction chamber by forcing an elution fluid to flow through the extraction chamber and along the second flow path.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: March 29, 2011
    Assignee: Cepheid
    Inventors: Kurt E. Petersen, William A. McMillan, Lee A. Christel, Ronald Chang, Farzad Pourahmadi, Jesus Ching, Gregory T. A. Kovacs, M. Allen Northrup
  • Publication number: 20100094147
    Abstract: Characteristics of a user's heart are detected. In accordance with an example embodiment, a ballistocardiogram (BCG) sensor is used to detect heart characteristics of a user, and provide a BCG output indicative of the detected heart characteristics. The BCG output is further processed using data from one or more additional sensors, such as to reduce noise and/or otherwise process the BCG signal to characterize the user's heart function.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 15, 2010
    Inventors: Omer T. Inan, Mozziyar Etemadi, Laurent B. Giovangrandi, Gregory T. Kovacs, Richard M. Wiard
  • Publication number: 20100068706
    Abstract: An analyte is separated from a fluid sample by introducing the sample into a cartridge having a sample port and a first flow path extending from the sample port. The first flow path includes an extraction chamber containing a solid support for capturing the analyte from the sample. The cartridge has a second flow path for eluting the captured analyte from the extraction chamber, the second flow diverging from the first flow path after passing through the extraction chamber. The sample is forced to flow through the extraction chamber and into a waste chamber, thereby capturing the analyte with the solid support as the sample flows through the extraction chamber. The captured analyte is then eluted from the extraction chamber by forcing an elution fluid to flow through the extraction chamber and along the second flow path.
    Type: Application
    Filed: February 12, 2009
    Publication date: March 18, 2010
    Applicant: Cepheid
    Inventors: Farzad Pourahmadi, William A. McMillan, Jesus Ching, Ronald Chang, Lee A. Christel, Gregory T.A. Kovacs, M. Allen Northrup, Kurt E. Petersen
  • Patent number: 7668588
    Abstract: In some embodiments, a wearable physiologic monitor comprises an application-specific integrated circuit (ASIC) including signal conditioning circuitry, a real-time clock, digital control logic, and mode-selection logic for setting an operating mode of the ASIC to a stand-alone mode or a peripheral mode. In the stand-alone mode, the digital control logic periodically stores data packets including multiple sensor data types in a digital memory such as a removable flash memory card. In the peripheral mode, the data packets are transmitted to a microcontroller for processing. The monitor includes sensors such as electrocardiogram (ECG) electrodes, accelerometers, and a temperature sensor, some of which may be integrated on the ASIC. The same basic chip design may be used in the stand-alone mode in disposable patches, and in the peripheral mode in bedside devices. The operating mode may be chosen at monitor manufacture, by connecting input pins to mode-selection logic levels.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: February 23, 2010
    Assignee: PhysioWave, Inc.
    Inventor: Gregory T. A. Kovacs
  • Patent number: 7601301
    Abstract: A method and apparatus for addressing and driving an electrode array includes addressing one or more electrodes within the array using a plurality of row and column lines. In one aspect, a value corresponding to a voltage is stored in a local memory associated with each electrode. The addressed electrodes are then driven at the voltages corresponding to the stored values. In another aspect of the method, a driving element associated with each addressed electrode is selectively coupled with a voltage line so as to charge the electrode with the voltage on the voltage line. The device and methods may be used in the synthesis of biopolymers such as oligonucleotides and peptides.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 13, 2009
    Assignee: Nanogen, Inc.
    Inventor: Gregory T. A. Kovacs
  • Patent number: 7569346
    Abstract: An analyte is separated from a fluid sample by introducing the sample into a cartridge having a sample port and a first flow path extending from the sample port. The first flow path includes an extraction chamber containing a solid support for capturing the analyte from the sample. The cartridge has a second flow path for eluting the captured analyte from the extraction chamber, the second flow diverging from the first flow path after passing through the extraction chamber. The sample is forced to flow through the extraction chamber and into a waste chamber, thereby capturing the analyte with the solid support as the sample flows through the extraction chamber. The captured analyte is then eluted from the extraction chamber by forcing an elution fluid to flow through the extraction chamber and along the second flow path.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: August 4, 2009
    Assignee: Cepheid
    Inventors: Kurt E. Petersen, William A. McMillan, Lee A. Christel, Ronald Chang, Farzad Pourahmadi, Jesus Ching, Gregory T. A. Kovacs, M. Allen Northrup
  • Patent number: 7501301
    Abstract: A method for making a plurality of low-cost microelectrode arrays (MEAs) on one substrate utilizing certain unmodified printed circuit board (PCB) fabrication processes and selected materials. In some embodiments, a MEA device is composed of a thin polymer substrate containing patterned conductive traces. Coverlays on both sides of the substrate insulate the conductive traces and defines the electrodes. Preferably, flexible PCB technology is utilized to simultaneously define the microelectrode arrays. In an embodiment, the sensor is an integrated temperature sensor/heater in which the MEA device operates to record extracellular electrical signals from electrically active cell cultures. The present invention enables economical and efficient mass production of MEA devices, making them particularly suitable for disposable applications such as drug discovery, biosensors, etc.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 10, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gregory T. A. Kovacs, Laurent Giovangrandi
  • Publication number: 20080254532
    Abstract: A reaction vessel having a reaction chamber for holding a sample is fabricated by producing a housing having a rigid frame defining the minor walls of the chamber. The housing also defines a port for introducing fluid into the chamber. At least one sheet or film is attached to the rigid frame to form at least one major wall of the chamber. In preferred embodiments, two sheets or films are attached to opposite sides of the rigid frame to form two opposing major walls of the chamber, the major walls being connected to each other by the minor walls.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 16, 2008
    Applicant: Cepheid
    Inventors: Ronald Chang, Lee A. Christel, Gregory T.A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi, Steven J. Young, Robert Yuan, Douglas B. Dority
  • Patent number: 7255833
    Abstract: This invention provides an apparatus for rapidly heating and/or cooling a sample in a reaction vessel. In some embodiments, the apparatus includes optics for the efficient detection of a reaction product in the vessel. The invention also provides a reaction vessel having a reaction chamber designed for optimal thermal conductance and for efficient optical viewing of reaction products in the chamber.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: August 14, 2007
    Assignee: Cepheid
    Inventors: Ronald Chang, Lee A. Christel, Gregory T. A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi, Steven J. Young, Robert Yuan, Douglas B. Dority
  • Patent number: 7188001
    Abstract: A system for controlling the temperature of a reaction mixture comprises at least one heating device for heating the mixture and a power regulator for regulating the amount of power supplied to the heating device. A controller in communication with the power regulator includes program instructions for heating the reaction mixture by setting a variable target temperature that initially exceeds a desired setpoint temperature for the mixture. When the heating device reaches a threshold temperature, the variable target temperature is decreased to the desired setpoint temperature. In another embodiment, the controller includes an adaptive control program for dynamically adjusting the duration or intensity of power pulses provided to the heating device.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 6, 2007
    Assignee: Cepheid
    Inventors: Steven J. Young, Gregory T. A. Kovacs, M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Konstantin Othmer, Lee A. Christel
  • Patent number: 7150997
    Abstract: A method of addressing and driving an electrode array includes the step of addressing one or more electrodes within the array using a plurality of row and column lines. In one aspect of the method, a value corresponding to a voltage is stored in a local memory associated with each electrode. The addressed electrodes are then driven at the voltages corresponding to the stored values. In another aspect of the method, a driving element associated with each addressed electrode is selectively coupled with a voltage line so as to charge the electrode with the voltage on the voltage line. The device and methods may be used in the synthesis of biopolymers such as oligonucleotides and peptides.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 19, 2006
    Assignee: Nanogen, Inc.
    Inventor: Gregory T. A. Kovacs
  • Patent number: 7135144
    Abstract: The invention provides a device and method for the manipulation of materials (e.g., particles, cells, macromolecules, such as proteins, nucleic acids or other moieties) in a fluid sample. The device comprises a substrate having a plurality of microstructures and an insulator film on the structures. Application of a voltage to the structures induces separation of materials in the sample. The device and method are useful for a wide variety of applications such as dielectrophoresis (DEP) or the separation of a target material from other material in a fluid sample.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 14, 2006
    Assignee: Cepheid
    Inventors: Lee A. Christel, Gregory T. A. Kovacs, William A. McMillan, M. Allen Northrup, Kurt E. Petersen, Farzad Pourahmadi
  • Patent number: 7101717
    Abstract: An addressable biologic electrode array includes an array of electrodes disposed on a support, the array of electrodes being selectively addressed and driven using a memory associated with each electrode of the array, the driven electrodes being driven at one of a plurality of stimulus levels by a source of electrical current or voltage external to the array.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: September 5, 2006
    Assignee: Nanogen, Inc.
    Inventor: Gregory T. A. Kovacs
  • Patent number: 7045097
    Abstract: A biologic electrode array is formed on a semiconductor substrate. A matrix of electrode sites is disposed on the semiconductor substrate. A matrix of optical detectors is disposed beneath the electrode sites in the semiconductor substrate, wherein each electrode site is associated with a corresponding optical detector. The optical detectors are coupled to detection circuitry formed on the semiconductor substrate. The electrode sites may include slitted electrodes, punctuated electrodes, or optically transparent electrodes.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: May 16, 2006
    Assignee: Nanogen, Inc.
    Inventor: Gregory T. A. Kovacs
  • Patent number: 6979424
    Abstract: An analysis device comprises a body having a reaction chamber for chemically reacting a sample, a separation region for separating components of the sample, and a transition region connecting the reaction chamber to the separation region. The transition region includes at least one valve for controlling the flow of fluid between the reaction chamber and the separation region. Further, the transition region thermally isolates the reaction chamber from the separation region. In a preferred embodiment, the reaction chamber is an amplification chamber for amplifying nucleic acid in the sample, and the separation region comprises an electrophoresis channel containing a suitable matrix material, such as electrophoresis gel or buffer, for separating nucleic acid fragments. Electrodes are embedded in the body for separation of sample components. The body may also be surrounded by external, functional components such as an optical detector for detecting separated components of the sample.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: December 27, 2005
    Assignee: Cepheid
    Inventors: M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Gregory T. A. Kovacs
  • Patent number: 6963772
    Abstract: A user-retainable monitoring system is disclosed. At least a pair of sensors is provided in association with a support member. The support member is preferably of a type that may be worn by or at least temporarily implanted in a patient. Possible sensor types include temperature sensors and impedance sensors. Temperature sensors may be used to detect a temperature differential between areas of tissue indicative of pathology. Impedance sensors are used to detect subcutaneous fluid detection. The support member may take the form of a bandage, drain or other structure. Monitor structures as described may have stand-alone utility or be connected to a processor or data recorder to enable various functions.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: November 8, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Matthew Bloom, Wm. Leroy Heinrichs, Gregory T. A. Kovacs, David Salzberg
  • Patent number: 6940598
    Abstract: An apparatus for thermally controlling and optically interrogating a reaction mixture includes a vessel [2] having a chamber [10] for holding the mixture. The apparatus also includes a heat-exchanging module [37] having a pair of opposing thermal plates [34A, 34B] for receiving the vessel [2] between them and for heating/and or cooling the mixture contained in the vessel. The module [37] also includes optical excitation and detection assemblies [46,48] positioned to optically interrogate the mixture. The excitation assembly [46] includes multiple light sources [100] and a set of filters for sequentially illuminating labeled analytes in the mixture with excitation beams in multiple excitation wavelength ranges. The detection assembly [48] includes multiple detectors [102] and a second set of filters for detecting light emitted from the chamber [10] in multiple emission wavelength ranges.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 6, 2005
    Assignee: Cepheid
    Inventors: Lee A. Christel, M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Gregory T. A. Kovacs, Steven J. Young, Ronald Chang, Douglas B. Dority, Raymond T. Hebert, Gregory J. Kintz