Patents by Inventor Gregory T. Kavounas

Gregory T. Kavounas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210236382
    Abstract: A CPR machine (100) is configured to perform, on a patient's (182) chest, compressions that alternate with releases. The CPR machine includes a compression mechanism (148), and a driver system (141) configured to drive the compression mechanism. A force sensing system (149) may sense a compression force, and the driving can be adjusted accordingly if there is a surprise. For instance, driving may have been automatic according to a motion-time profile, which is adjusted if the compression force is not as expected (850). An optional chest-lifting device (152) may lift the chest between the compressions, to assist actively the decompression of the chest. A lifting force may be sensed, and the motion-time profile can be adjusted if the compression force or the lifting force is not as expected.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 5, 2021
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Anders Nilsson, Jonas Lagerstrom, Bo Mellberg, Anders Jeppsson, Marcus Ehrstedt, Bjarne Madsen Hardig, Fredrik Arnwald, Erik von Schenck, Paul Rasmusson, Sara Lindroth, Fred Chapman, Ryan Landon, Mitchell A. Smith, Steven B. Duke, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 11065463
    Abstract: In embodiments, a Wearable Cardioverter Defibrillator (WCD) system includes a support structure for the patient to wear, and components that the support structure maintains on the patient's body. The components include a defibrillator, associated electrodes, and so on. The defibrillator can operate in a WCD mode while the patient wears the support structure. The defibrillator can further operate in a different, AED mode, during which time the patient need not wear a portion of the support structure, or even the entire support structure. Sometimes the AED mode is a type of a fully automatic AED mode. Other times the AED mode is a type of a semi-automated AED mode, where an attendant is present to administer the shock; at such times, the patient may not even need to have electrodes attached. This way the patient is more comfortable for a longer time.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 20, 2021
    Assignee: West Affum Holdings Corp.
    Inventors: Brian D. Webster, Zoie Engman, Phillip D. Foshee, Jr., David P. Finch, Joseph L. Sullivan, Gregory T. Kavounas
  • Patent number: 11065464
    Abstract: A wearable system includes a support structure with optionally one or more electrodes in an unbiased state. Different sensor modules may monitor, for the long-term, different patient parameters such as the patient's motion, a physiological parameter, a patient sound etc., other than the patient's ECG. The sensor modules can be worn by the patient concurrently, or only one at a time as convenient, and may provide respective sensor signals. The system may determine from one or more of the available received signals whether a certain threshold has been reached, such as when the patient is having an actionable episode. If so, at least one electrode may become mechanically biased against the patient's body, for making good electrical contact. Then, an ECG reading may be taken and/or therapy may be administered.
    Type: Grant
    Filed: June 9, 2018
    Date of Patent: July 20, 2021
    Assignee: West Affum Holdings Corp.
    Inventor: Gregory T. Kavounas
  • Patent number: 11058884
    Abstract: In embodiments, a wearable medical (WM) system includes ECG electrodes, and a support structure that can be worn by an ambulatory patient so as to maintain the ECG electrodes on the patient's body. When thus maintained, the ECG electrodes can be configured to sense an ECG signal of the ambulatory patient. The WM system further includes a memory that stores a reference template, and an output device. The reference template can be made from one or more early portions of the ECG signal of the patient. Then later portions of the ECG signal are sensed and compared against the reference template, to determine if there is a specific problem. If it is so determined, the output device can output an alert.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: July 13, 2021
    Assignee: West Affum Holding Corp
    Inventors: Jaeho Kim, Pamela Breske, Gregory T. Kavounas
  • Patent number: 11026578
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: June 8, 2021
    Assignee: West Affum Holdings Corp.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Patent number: 11013660
    Abstract: A CPR machine (100) is configured to perform, on a patient's (182) chest, compressions that alternate with releases. The CPR machine includes a compression mechanism (148), and a driver system (141) configured to drive the compression mechanism. A force sensing system (149) may sense a compression force, and the driving can be adjusted accordingly if there is a surprise. For instance, driving may have been automatic according to a motion-time profile, which is adjusted if the compression force is not as expected (850). An optional chest-lifting device (152) may lift the chest between the compressions, to assist actively the decompression of the chest. A lifting force may be sensed, and the motion-time profile can be adjusted if the compression force or the lifting force is not as expected.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: May 25, 2021
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Anders Nilsson, Jonas Lagerstrom, Bo Mellberg, Anders Jeppsson, Marcus Ehrstedt, Bjarne Madsen Hardig, Fredrik Arnwald, Erik Von Schenck, Paul Rasmusson, Sara Lindroth, Fred Chapman, Ryan Landon, Mitchell A. Smith, Steven B. Duke, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 11000691
    Abstract: A wearable medical monitoring (WMM) system may be worn for a long time. Some embodiments of WMM systems are wearable cardioverter defibrillator (WCD) systems. In such systems, ECG electrodes sense an ECG signal of the patient, and store it over the long-term. The stored ECG signal can be analyzed for helping long-term heart rate monitoring of the patient. The heart rate monitoring can be assisted a) by special filtering techniques that remove short-term variations inherent in patients' short-term heart rate determinations, and b) by indication techniques that indicate when conditions hampered sensing of the ECG signal too much for a reliable heart rate determination.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: May 11, 2021
    Assignee: West Affum Holdings Corp.
    Inventors: Steven Postlewait, Joseph Sullivan, Gregory T. Kavounas
  • Publication number: 20210000684
    Abstract: In embodiments, a CPR chest compression system includes a retention structure that can retain the patient's body, and a compression mechanism that can perform automatically CPR compressions and releases to the patient's chest. The compression mechanism can pause the performing of the CPR compressions for a short time, so that an attendant can check the patient. The CPR system also includes a user interface that can output a human-perceptible check patient prompt, to alert an attendant to check the patient during the pause. An advantage can be when the attendant checks in situations where the condition of the patient might have changed, and an adjustment is needed. Or in situations where the patient may have improved enough to where the compressions are no longer needed.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicants: STRYKER CORPORATION, JOLIFE AB, PHYSIO-CONTROL, INC.
    Inventors: Erik von Schenck, Anders Nilsson, Sara Lindroth, Robert Walker, Fred Chapman, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20200394187
    Abstract: In embodiments, given a surface that has domains on it and a first location, a second location is generated in the surface. The second location belongs in the same domains as the first location, and does not belong in the same domains as the second location. An advantage can be that, in embodiments, the second location can be used in lieu of the first location. A use case can be where it is desired to protect the privacy of location data of an entity, such as its address.
    Type: Application
    Filed: March 19, 2020
    Publication date: December 17, 2020
    Inventors: Mark Janzen, Gregory T. Kavounas, Rohit Ghule, Charles M. Morrisette
  • Publication number: 20200376285
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 10835450
    Abstract: In embodiments, a CPR chest compression system includes a retention structure that can retain the patient's body, and a compression mechanism that can perform automatically CPR compressions and releases to the patient's chest. The compression mechanism can pause the performing of the CPR compressions for a short time, so that an attendant can check the patient. The CPR system also includes a user interface that can output a human-perceptible check patient prompt, to alert an attendant to check the patient during the pause. An advantage can be when the attendant checks in situations where the condition of the patient might have changed, and an adjustment is needed. Or in situations where the patient may have improved enough to where the compressions are no longer needed.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 17, 2020
    Assignees: STRYKER CORPORATION, JOLIFE AB, PHYSIO-CONTROL, INC.
    Inventors: Erik von Schenck, Anders Nilsson, Sara Lindroth, Robert G. Walker, Fred W. Chapman, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20200306133
    Abstract: A CPR chest compression machine includes a retention structure that is configured to retain a body of the patient, and a compression mechanism. The compression mechanism is coupled to the retention structure and configured to perform successive compressions to the patient's chest. Various types of chest compressions may be performed on a patient during a single resuscitation event. Some embodiments also include a driver configured to drive the compression mechanism. The compression mechanism may thus perform chest compressions that differ from each other in a number of aspects, for example the depth of the compressions or the height of the active decompressions between the compressions. Some embodiments also include an adjustment mechanism. The adjustment mechanism may shift the compression mechanism with respect to the patient so that the chest compressions are performed at different locations of the patient's chest.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Fred W. Chapman, Gregory T. Kavounas
  • Patent number: 10744335
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 18, 2020
    Assignee: West Affum Holdings Corp.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 10702449
    Abstract: A CPR chest compression machine includes a retention structure that is configured to retain a body of the patient, and a compression mechanism. The compression mechanism is coupled to the retention structure and configured to perform successive compressions to the patient's chest. Various types of chest compressions may be performed on a patient during a single resuscitation event. Some embodiments also include a driver configured to drive the compression mechanism. The compression mechanism may thus perform chest compressions that differ from each other in a number of aspects, for example the depth of the compressions or the height of the active decompressions between the compressions. Some embodiments also include an adjustment mechanism. The adjustment mechanism may shift the compression mechanism with respect to the patient so that the chest compressions are performed at different locations of the patient's chest.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 7, 2020
    Assignee: Physio-Control, Inc.
    Inventors: Fred W. Chapman, Gregory T. Kavounas
  • Patent number: 10695264
    Abstract: A CPR system includes a retention structure to retain the patient's body, and a compression mechanism to perform CPR compressions to the patient's chest. The CPR system further includes a processor to control the compression mechanism, and thus the performance of the CPR compressions. In embodiments, the CPR system compresses at a rate or frequency that is purposely sub-optimal for circulation at least some of the time, and especially when it is detected that the patient has regained consciousness. An advantage can be that the patient may thus faint again, and therefore perceive less of the unpleasant experience of the mechanical chest compressions that the CPR system continues to perform on them as it preserves them alive.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: June 30, 2020
    Assignee: JOLIFE AB
    Inventors: Tyson G. Taylor, Alex Esibov, Bjarne Madsen Hardig, Fred Chapman, Robert G. Walker, Gregory T. Kavounas
  • Publication number: 20200155861
    Abstract: A wearable medical system configured to be worn by a person, comprising a support structure configured to be worn by the person, a monitoring device configured to monitor at least one physiological parameter of the person, wherein the at least one physiological parameter includes an electrocardiogram (ECG) reading of the person, an electrode coupled to the support structure, an energy storage device configured to store an electric charge for use in delivering a shock to the person through the electrode, and a biasing mechanism comprising at least one of an inflatable device, a hydraulic device, an electromagnetic device, and/or a screw gun device, the biasing mechanism configured to transition from the unbiased state to the biased state responsive to a value of the at least one physiological parameter reaching a threshold. The electrode is more movable with respect to the person's body in the unbiased state than the biased state.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 21, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Fred W. Chapman, Gregory T. Kavounas
  • Publication number: 20200147368
    Abstract: A Wearable Cardiac Defibrillator (WCD) system is configured to be worn by a patient who carries a mobile communication device. The mobile communication device has a user interface that is configured to enable the patient to enter wireless inputs. The WCD system includes a communication module that is configured to establish a local comlink with the mobile communication device. The WCD system also includes a tethered action unit that has a user interface configured to enable the patient to enter action inputs. The WCD system can perform some of its functions in response to the action inputs or to the wireless inputs. Since the wireless inputs can be provided from the mobile communication device instead of the action unit, the patient is less likely to attract attention when entering them, and thus exhibit better compliance.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: David Peter Finch, Phillip Dewey Foshee, JR., Erick Michael Roane, Laura Marie Gustavson, Kenneth F. Cowan, Robert Reuben Buchanan, Daniel James Finney, Jason W. Fouts, Gregory T. Kavounas
  • Publication number: 20200121938
    Abstract: In some embodiments, a wearable medical device system includes a processor configured to determine whether a patient requires electrical therapy to be provided via a plurality of therapy electrodes, the electrical therapy comprising discharging at least a portion of a stored electrical charge from an energy storage module, and if so, cause a fluid deploying mechanism to deploy a portion of the stored fluid to an interface between at least two therapy electrodes and the patient's skin prior to providing the electrical therapy, the deployed portion of fluid adapted to decrease the impedance measured by an impedance measurement circuit, and cause the fluid deploying mechanism to deploy an additional portion of fluid in response to the impedance measured by the impedance measurement circuit increasing above a threshold during the electrical therapy.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, JR., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20200114156
    Abstract: A wearable cardioverter defibrillator (WCD) comprises a support structure to be worn by a patient, an energy storage module to store an electrical charge, a discharge circuit coupled to the energy storage module, a measurement circuit, a user interface that includes a speaker, and a processor.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 16, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Phillip D. Foshee, JR., David P. Finch, Laura M. Gustavson, Nikolai Korsun, Joseph L. Sullivan, Gregory T. Kavounas
  • Publication number: 20200069954
    Abstract: A wearable cardioverter defibrillator (“WCD”) system includes a support structure that can be worn by a patient, and a defibrillator coupled to the support structure. An ECG input, rendered from an ECG of the patient, may meet a primary shock criterion. One or more sensor modules are further provided, which are worn by the patient at different times. The sensor modules may monitor different physiological parameters of the patient, and transmit signals about them. The WCD system further has a multi-sensor interface to receive the transmitted signals, and a processor to determine from them whether a secondary shock criterion is met. If both the primary and the secondary shock criteria are met, the decision is to shock. The signals increase specificity of the detection, while the patient can wear different modules depending on context.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Fred William Chapman, Gregory T. Kavounas