Patents by Inventor Gregory T. Kovacs

Gregory T. Kovacs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240268748
    Abstract: A computer-implemented method and system includes accessing neurophysiological and neurovascular data recorded during sleep. A function mapping is executed from said neurophysiological and neurovascular data to a target that is one of a glymphatic flow marker, a molecular analysis marker of neurodegeneration, or a neuroimaging marker of neurodegeneration. A target prediction model is output based on the function mapping. The target prediction model can receive new neurophysiological and neurovascular data and output a predicted marker of neurodegeneration.
    Type: Application
    Filed: April 15, 2024
    Publication date: August 15, 2024
    Inventors: Paul Dagum, Gregory T.A. Kovacs, Laurent B. Giovangrandi, Carl J. Weber, Joerg C. Student, Nathan Whipple, Jonathan I. Kaplan
  • Publication number: 20230389855
    Abstract: A computer-implemented method and system includes accessing neurophysiological and neurovascular data recorded during sleep. A function mapping is executed from said neurophysiological and neurovascular data to a target that is one of a glymphatic flow marker, a molecular analysis marker of neurodegeneration, or a neuroimaging marker of neurodegeneration. A target prediction model is output based on the function mapping. The target prediction model can receive new neurophysiological and neurovascular data and output a predicted marker of neurodegeneration.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Inventors: Paul Dagum, Gregory T.A. Kovacs, Laurent B. Giovangrandi, Carl J. Weber, Joerg C. Student, Nathan Whipple, Jonathan I. Kaplan
  • Patent number: 11759142
    Abstract: A computer-implemented method and system includes accessing neurophysiological and neurovascular data recorded during sleep. A function mapping is executed from said neurophysiological and neurovascular data to a target that is one of a glymphatic flow marker, a molecular analysis marker of neurodegeneration, or a neuroimaging marker of neurodegeneration. A target prediction model is output based on the function mapping. The target prediction model can receive new neurophysiological and neurovascular data and output a predicted marker of neurodegeneration.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: September 19, 2023
    Assignee: APPLIED COGNITION, INC.
    Inventors: Paul Dagum, Gregory T. A. Kovacs, Laurent B. Giovangrandi, Carl J. Weber, Joerg C. Student, Nathan Whipple, Jonathan I. Kaplan
  • Publication number: 20230099079
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a scale and risk-assessment circuitry which is configured to assess a condition likely linked to the user. The scale includes a platform, and data-procurement circuitry for collecting signals specific to the user and cardio-physiological measurements. The scale includes processing circuitry to process data obtained by the data-procurement circuitry, therefrom generates cardio-related physiologic data, and sends an alert of the condition. The risk-assessment circuitry identifies a risk that the user has a condition based on the reference information and the user data provided by the scale and outputs generic information correlating to the condition to the scale that is tailored based on the identified risk.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 30, 2023
    Inventor: Gregory T. Kovacs
  • Publication number: 20230080140
    Abstract: A computer-implemented method and system includes accessing neurophysiological and neurovascular data recorded during sleep. A function mapping is executed from said neurophysiological and neurovascular data to a target that is one of a glymphatic flow marker, a molecular analysis marker of neurodegeneration, or a neuroimaging marker of neurodegeneration. A target prediction model is output based on the function mapping. The target prediction model can receive new neurophysiological and neurovascular data and output a predicted marker of neurodegeneration.
    Type: Application
    Filed: October 4, 2022
    Publication date: March 16, 2023
    Inventors: Paul Dagum, Gregory T.A. Kovacs, Laurent B. Giovangrandi, Carl J. Weber, Joerg C. Student, Nathan Whipple, Jonathan I. Kaplan
  • Patent number: 11561126
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a scale and external circuitry. The scale includes a platform, and data-procurement circuitry for collecting signals indicative of the user's identity and cardio-physiological measurements. The scale includes processing circuitry to process data obtained by the data-procurement circuitry, therefrom generate cardio-related physiologic data, and to send user data to the external circuitry. The external circuitry identifies a risk that the user has a condition based on the reference information and the user data provided by the scale and outputs generic information correlating to the condition to the scale that is tailored based on the identified risk.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: January 24, 2023
    Assignee: Physiowave, Inc.
    Inventor: Gregory T. Kovacs
  • Patent number: 11478184
    Abstract: A computer-implemented method and system includes accessing neurophysiological and neurovascular data recorded during sleep. A function mapping is executed from said neurophysiological and neurovascular data to a target that is one of a glymphatic flow marker, a molecular analysis marker of neurodegeneration, or a neuroimaging marker of neurodegeneration. A target prediction model is output based on the function mapping. The target prediction model can receive new neurophysiological and neurovascular data and output a predicted marker of neurodegeneration.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: October 25, 2022
    Assignee: APPLIED COGNITION, INC.
    Inventors: Paul Dagum, Gregory T. A. Kovacs, Laurent B. Giovangrandi, Carl J. Weber, Joerg C. Student, Nathan Whipple, Jonathan I. Kaplan
  • Patent number: 10980483
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a scale and external circuitry. The scale includes a platform for a user to stand on, and data-procurement circuitry for collecting signals indicative of the user's identity and cardio-physiological measurements while the user is standing on the platform. The scale includes processing circuitry to process data obtained by the data-procurement circuitry and therefrom generate cardio-related physiologic data, and an output circuit to send user data from the scale for reception at a remote location. The external circuitry receives and validates the user data as concerning a specific user associated with a user ID and determine at least one physiologic parameter of the user using the user data. Further, the external circuitry derives additional health information corresponding to the user data based on categories of interest and outputs the additional health information to the scale for display.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 20, 2021
    Assignee: Physiowave, Inc.
    Inventors: Gregory T. Kovacs, Richard M. Wiard
  • Patent number: 10923217
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a scale. The scale includes a platform in which a plurality of electrodes are integrated and configured and arranged for engaging a user and processing circuitry. The processing circuitry is electrically integrated with the plurality of electrodes to process user-corresponding data with physiologic parameter data obtained while the user is standing on the platform and therefrom derive and output derivation data indicative of a physiologic status of the user for assessment of a condition or treatment of the user that corresponds with the physiologic status, and store, in response to the derived derivation data, additional data in the memory circuit to supplement the user-corresponding data with information corresponding to the physiologic parameter data obtained while the user is standing on the platform.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 16, 2021
    Assignee: Physiowave, Inc.
    Inventor: Gregory T. Kovacs
  • Patent number: 10635782
    Abstract: Certain exemplary aspects of the present disclosure are directed towards methods and apparatuses for conducting physical examinations of a human. Optionally, such embodiments permit for remote examination of a patient, for example, the patient's heart or lung region. In such embodiments, a user operates a remote physical examination sensor, while a remote examination computer and/or remote medical personnel reviews/analyzes medical data received from the remote physical examination sensor to diagnose the condition of the user. The remote physical examination instrument may be equipped with a plurality of skin-compatible electrodes on a remote examination sensor connected to the user's chest, as well as one or more electrodes on the top cover or sides of the remote examination sensor connecting to the user's hand and providing medical data to the remote examination computer.
    Type: Grant
    Filed: March 11, 2017
    Date of Patent: April 28, 2020
    Inventor: Gregory T. Kovacs
  • Patent number: 10553306
    Abstract: Aspects of the present disclosure are directed to an apparatus comprising a scale and external circuitry. The scale includes a platform, data-procurement circuitry to engage the user with electrical signals and collect signals indicative of the user's identity and cardio-physiological measurements while the user is standing on the platform, processing circuitry to process data obtained by the data-procurement circuitry while the user is standing on the platform and therefrom generate cardio-related physiologic data corresponding to the collected signals, and an output circuit. The output circuit sends user data, including data indicative of the user's identity and the generated cardio-related physiologic data, for reception at external circuitry. The external circuitry receives the user data, validates the cardio-related physiologic data as concerning the user associated with a patient profile, and updates the patient profile using the generated cardio-related physiologic data.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 4, 2020
    Assignee: Physiowave, Inc.
    Inventors: Gregory T. Kovacs, Richard M. Wiard
  • Patent number: 10451473
    Abstract: Physiological assessment scale systems and methods are implemented using a variety of approaches. According to one implementation, a scale measures the physiological data of a user engaging sensor circuitry on a platform region of the scale. In a physiological assessment mode, physiological data of the user is detected at respective states of physical exertion. The physiological data is then processed by user-targeted circuitry to determine physiological parameters of the user pertaining to the respective physical exertion states, such as may pertain to an increase in exertion or a reduction in exertion. These physiological parameters may, for example, be used to provide an indication of the physical health and fitness of the user. Such parameters may then be associated with the user and saved to a data-access circuit, and also forwarded to a display which communicates the physiological parameters among other information to the user through the platform region.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 22, 2019
    Assignee: Physiowave, Inc.
    Inventor: Gregory T. Kovacs
  • Patent number: 10436630
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a weighing scale and external circuitry. The weighing scale includes a platform including force sensor circuitry and a plurality of electrodes to collect signals indicative of the user's identity and cardio-related physiologic data while the user is standing on the platform and processing circuitry. The processing circuitry configured with the force sensor circuitry and the plurality of electrodes to collect the cardio-related physiologic data from the user and output at least portions of the cardio-related physiologic data as user data. The external circuitry receives user data from a plurality of weighing scales include the weighing scale and provides a hierarchy of services using scale-obtained data, wherein the hierarchy of services include different services enabled in response to user selection of the service and activation of subscription levels of different weighted values.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 8, 2019
    Assignee: Physiowave, Inc.
    Inventors: Gregory T. Kovacs, Richard M. Wiard
  • Patent number: 10395055
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a scale and external circuitry. The scale includes a platform, and data-procurement circuitry for collecting signals indicative of the user's identity and cardio-physiological measurements. The scale includes processing circuitry to process data obtained by the data-procurement circuitry, generate cardio-related physiologic data, and send user data to the external circuitry. The external circuitry validates the user data as concerning a specific user, correlates the user data with a user profile of the user, provides a clinical indication using the user data, and controls access to the user profile by allowing access to the clinical indication and the user data to or by a physician and not allowing access to the clinical indication to the user until the user provides an input indicating interest in the clinical indication and the physician provides a prescription for the clinical indication.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: August 27, 2019
    Assignee: Physiowave, Inc.
    Inventors: Gregory T. Kovacs, Richard M. Wiard
  • Patent number: 10390772
    Abstract: Certain aspects of the disclosure are directed to an on-demand healthcare apparatus used to enrich the doctor-patient relationship, provide accessible specialized care, while also reducing costs. The apparatus includes a weighing scale including a platform and processing circuitry. The processing circuitry or a portion thereof is electrically integrated with a plurality of sensors under the platform and collects physiological data from the user while the user is standing on the platform. The processing circuitry aggregates scale-obtained data with user data from a plurality of user devices and/or medical devices, filters a database or a system of computer networks with the aggregated data in response to the aggregated data matching trigger data indicating the user is at risk for a health condition, and provides the aggregated data and filtered data to external circuitry accessible by a healthcare professional for review and for providing on-demand care.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 27, 2019
    Assignee: Physiowave, Inc.
    Inventors: Gregory T. Kovacs, Richard M. Wiard
  • Patent number: 10215619
    Abstract: Certain aspects of the disclosure are directed to an apparatus including a weighing-scale platform, housing, and a plurality of sensors and sensor-data processing to collect a first set of physiological data while the user is standing on the platform. The first set of has an accuracy component that is dependent on or defined using a time-based interval or time-based metric. The apparatus further includes data-assimilation circuitry to provide synchronization by accessing a profile having information for identifying the user, accessing an indication of the time interval or metric derived from the first set of physiological data specific to the user, identifying a peripheral device including physiological-measuring circuitry with a second set of physiological data, the second set of physiological data being from and specific to the user, and while accounting for the time-based inaccuracies, comparing aspects of the first and second sets of physiological data.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: February 26, 2019
    Assignee: Physiowave, Inc.
    Inventor: Gregory T. Kovacs
  • Patent number: 10130273
    Abstract: Aspects of the present disclosure are directed to a CPU and a memory circuit that has user-corresponding data stored on the memory circuit, and a platform over which a plurality of electrodes are interleaved, and configured for engaging the user. While the plurality of electrodes is concurrently contacting a limb or other extremity of the user, measurement signals are obtained from the plurality of electrodes. Based on a plurality of impedance-measurement signals being obtained from the electrodes, signals are generated that correspond to cardiovascular timings specific to the user. In such aspects of the present disclosure, pulse characteristic signals are determined based on the plurality of impedance-measurement signals and comparisons of user-obtained data are made relative to user-data profiles stored in the memory circuit.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: November 20, 2018
    Assignee: Physiowave, Inc.
    Inventors: Gregory T. Kovacs, Laurent B. Giovangrandi, Robert Bruce Darling
  • Patent number: 10004407
    Abstract: Certain aspects of the instance disclosure are assessing a fitness of a user using a weighing scale apparatus. Specific embodiments concern an arrangement of devices configured and arranged to monitor physiological parameters while the user is standing on a platform region of the device, and communicate an assessed fitness to the user as feedback. Further specific embodiments concern methods of monitoring physiological parameters of a user using the apparatus, assessing the fitness of the user based on one or more of the physiological parameters, and communicating the assessed fitness to the user as feedback.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 26, 2018
    Assignee: Physiowave, Inc.
    Inventor: Gregory T. Kovacs
  • Patent number: 9949662
    Abstract: Aspects of the present disclosure are directed to a CPU and a memory circuit that has user-corresponding data stored on the memory circuit, and a platform over which a plurality of electrodes are interleaved, and configured for engaging the user. While the plurality of electrodes is concurrently contacting a limb or other extremity of the user, measurement signals are obtained from the plurality of electrodes. Based on a plurality of impedance-measurement signals being obtained from the electrodes, signals are generated that correspond to cardiovascular timings of the user. In such aspects of the present disclosure, pulse characteristic signals are determined based on the plurality of impedance-measurement signals. One of the pulse characteristic signals is extracted, and used as a timing reference to extract and process another pulse characteristic signal.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 24, 2018
    Assignee: Physiowave, Inc.
    Inventors: Laurent B. Giovangrandi, Gregory T. Kovacs, Robert Bruce Darling
  • Patent number: 9943241
    Abstract: Aspects of the present disclosure are directed toward obtaining a plurality of impedance-measurement signals while a set of at least three electrodes are concurrently contacting a user. Additionally, various aspects of the present disclosure include determining a plurality of pulse characteristic signals based on the plurality of impedance-measurement signals. One of the pulse characteristic signals is extracted from one of the impedance-measurement signals and is used as a timing reference to extract and process another of the pulse characteristic signals.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: April 17, 2018
    Assignee: Physiowave, Inc.
    Inventors: Laurent B. Giovangrandi, Gregory T. Kovacs, Robert Bruce Darling