Patents by Inventor Gregory Theodore GIBSON
Gregory Theodore GIBSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12125446Abstract: A method for operating a display comprising a plurality of emission diodes. For each emission diode, an output brightness of the emission diode is monitored over a range of compliance voltages. Based on the monitored output brightness of the emission diode, an inflection voltage is determined. At the inflection voltage, increasing a commanded compliance voltage does not yield an above-threshold increase in output brightness. Further, decreasing the commanded compliance voltage from the inflection voltage yields an above-threshold decrease in output brightness. In response to receiving a request for the emission diode to operate at a peak output brightness, an applied compliance voltage is commanded that is within a threshold voltage of the inflection voltage.Type: GrantFiled: October 18, 2021Date of Patent: October 22, 2024Assignee: Microsoft Technology Licensing, LLCInventors: Gregory Theodore Gibson, Martin Francis Galinski, III
-
Publication number: 20240041321Abstract: Techniques are described herein that are capable of tracking an eye of a user using multiple lasers. Light from the lasers is scanned across respective partially overlapping portions of a region that includes an eye of a user during respective time periods. Portion(s) of the light that are reflected from the eye are detected by respective photodetector(s). In an example implementation, a signal corresponding to the detected portion(s) is provided in a pixel of a frame buffer based at least in part on a current angle of a mirror used to scan the light across the region. In a second implementation, digital state(s) are provided based at least in part on difference(s) between a reference signal and signal(s) corresponding to the detected portion(s), and a time value indicating a time at which a glint is detected by a photodetector is provided when a digital state triggers an interrupt handler.Type: ApplicationFiled: October 18, 2023Publication date: February 8, 2024Inventors: Gregory Theodore GIBSON, Joshua Owen MILLER
-
Patent number: 11838693Abstract: Controlling a mirror in a MEMS based projector. A method includes iteratively performing various acts. The method includes inputting a time domain target wave array, with target elements, to a system for a MEMS coupled to the mirror of the projector. The time domain target wave array includes a set of n target elements. The method further includes driving the driver to move the mirror using elements in a drive array comprising a set of drive elements. The method further includes sampling a time domain output wave for the movement of the mirror to construct an output wave array with output elements corresponding to the target elements. The method further includes identifying errors between the target elements and the output elements. The method further includes modifying the drive elements in the drive array to attempt to minimize the errors when driving the MEMS on subsequent drive cycles.Type: GrantFiled: May 20, 2021Date of Patent: December 5, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Gregory Theodore Gibson, Algird Michael Gudaitis
-
Patent number: 11826103Abstract: Techniques are described herein that are capable of tracking an eye of a user using multiple lasers. Light from the lasers is scanned across respective partially overlapping portions of a region that includes an eye of a user during respective time periods. Portion(s) of the light that are reflected from the eye are detected by respective photodetector(s). In an example implementation, a signal corresponding to the detected portion(s) is provided in a pixel of a frame buffer based at least in part on a current angle of a mirror used to scan the light across the region. In a second implementation, digital state(s) are provided based at least in part on difference(s) between a reference signal and signal(s) corresponding to the detected portion(s), and a time value indicating a time at which a glint is detected by a photodetector is provided when a digital state triggers an interrupt handler.Type: GrantFiled: October 11, 2019Date of Patent: November 28, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Gregory Theodore Gibson, Joshua Owen Miller
-
Publication number: 20230120547Abstract: A method for operating a display comprising a plurality of emission diodes. For each emission diode, an output brightness of the emission diode is monitored over a range of compliance voltages. Based on the monitored output brightness of the emission diode, an inflection voltage is determined. At the inflection voltage, increasing a commanded compliance voltage does not yield an above-threshold increase in output brightness. Further, decreasing the commanded compliance voltage from the inflection voltage yields an above-threshold decrease in output brightness. In response to receiving a request for the emission diode to operate at a peak output brightness, an applied compliance voltage is commanded that is within a threshold voltage of the inflection point voltage.Type: ApplicationFiled: October 18, 2021Publication date: April 20, 2023Applicant: Microsoft Technology Licensing, LLCInventors: Gregory Theodore GIBSON, Martin Francis GALINSKI, III
-
Publication number: 20230004217Abstract: Technologies are described herein for an eye tracking that may be employed by devices and systems such as head mount display (HMD) devices. Light that is reflected from a user's eye may be specular or scattered. The specular light has an intensity or magnitude that may saturate the electronics. The presently disclosed techniques mitigate saturation by generating detected signals from an optical detector, evaluating the signal levels for the detected signal, and selectively gating the detected signals that have saturated. The remaining scattered signals can be combined to achieve a combined signal that can be converted into a digital signal without saturating the electronics, which can then be processed to form an image of the eye for identification purposes, for tracking eye movement, and for other uses. The described technologies provide a clear image without ambient light reflections or specular light interfering with the image.Type: ApplicationFiled: June 30, 2021Publication date: January 5, 2023Inventors: Niranjan Achugundla PUTTASWAMY, Gregory Theodore GIBSON, Jeffrey Neil MARGOLIS, John Allen TARDIF
-
Patent number: 11537201Abstract: Technologies are described herein for an eye tracking that may be employed by devices and systems such as head mount display (HMD) devices. Light that is reflected from a user's eye may be specular or scattered. The specular light has an intensity or magnitude that may saturate the electronics. The presently disclosed techniques mitigate saturation by generating detected signals from an optical detector, evaluating the signal levels for the detected signal, and selectively gating the detected signals that have saturated. The remaining scattered signals can be combined to achieve a combined signal that can be converted into a digital signal without saturating the electronics, which can then be processed to form an image of the eye for identification purposes, for tracking eye movement, and for other uses. The described technologies provide a clear image without ambient light reflections or specular light interfering with the image.Type: GrantFiled: June 30, 2021Date of Patent: December 27, 2022Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Niranjan Achugundla Puttaswamy, Gregory Theodore Gibson, Jeffrey Neil Margolis, John Allen Tardif
-
Publication number: 20210286169Abstract: Controlling a mirror in a MEMS based projector. A method includes iteratively performing various acts. The method includes inputting a time domain target wave array, with target elements, to a system for a MEMS coupled to the mirror of the projector. The time domain target wave array includes a set of n target elements. The method further includes driving the driver to move the mirror using elements in a drive array comprising a set of drive elements. The method further includes sampling a time domain output wave for the movement of the mirror to construct an output wave array with output elements corresponding to the target elements. The method further includes identifying errors between the target elements and the output elements. The method further includes modifying the drive elements in the drive array to attempt to minimize the errors when driving the MEMS on subsequent drive cycles.Type: ApplicationFiled: May 20, 2021Publication date: September 16, 2021Inventors: Gregory Theodore GIBSON, Algird Michael GUDAITIS
-
Patent number: 11039111Abstract: Controlling a mirror in a MEMS based projector. A method includes iteratively performing various acts. The method includes inputting a time domain target wave array, with target elements, to a system for a MEMS coupled to the mirror of the projector. The time domain target wave array includes a set of n target elements. The method further includes driving the driver to move the mirror using elements in a drive array comprising a set of drive elements. The method further includes sampling a time domain output wave for the movement of the mirror to construct an output wave array with output elements corresponding to the target elements. The method further includes identifying errors between the target elements and the output elements. The method further includes modifying the drive elements in the drive array to attempt to minimize the errors when driving the MEMS on subsequent drive cycles.Type: GrantFiled: May 23, 2019Date of Patent: June 15, 2021Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Gregory Theodore Gibson, Algird Michael Gudaitis
-
Patent number: 11029512Abstract: Examples are disclosed that relate to scanning display systems. One example provides a display device comprising a controller, a light source, and a scanning mirror system. The scanning mirror system comprises a scanning mirror configured to scan light from the light source in at least one direction at a resonant frequency of the scanning mirror, and an electromechanical actuator system coupled with the scanning mirror and being controllable by the controller to adjust the resonant frequency of the scanning mirror.Type: GrantFiled: June 27, 2018Date of Patent: June 8, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Mark Alan Champion, Utku Baran, Joshua Owen Miller, Wyatt Owen Davis, Gregory Theodore Gibson
-
Publication number: 20210106219Abstract: Techniques are described herein that are capable of tracking an eye of a user using multiple lasers. Light from the lasers is scanned across respective partially overlapping portions of a region that includes an eye of a user during respective time periods. Portion(s) of the light that are reflected from the eye are detected by respective photodetector(s). In an example implementation, a signal corresponding to the detected portion(s) is provided in a pixel of a frame buffer based at least in part on a current angle of a mirror used to scan the light across the region. In a second implementation, digital state(s) are provided based at least in part on difference(s) between a reference signal and signal(s) corresponding to the detected portion(s), and a time value indicating a time at which a glint is detected by a photodetector is provided when a digital state triggers an interrupt handler.Type: ApplicationFiled: October 11, 2019Publication date: April 15, 2021Inventors: Gregory Theodore Gibson, Joshua Owen Miller
-
Publication number: 20200374495Abstract: Controlling a mirror in a MEMS based projector. A method includes iteratively performing various acts. The method includes inputting a time domain target wave array, with target elements, to a system for a MEMS coupled to the mirror of the projector. The time domain target wave array includes a set of n target elements. The method further includes driving the driver to move the mirror using elements in a drive array comprising a set of drive elements. The method further includes sampling a time domain output wave for the movement of the mirror to construct an output wave array with output elements corresponding to the target elements. The method further includes identifying errors between the target elements and the output elements. The method further includes modifying the drive elements in the drive array to attempt to minimize the errors when driving the MEMS on subsequent drive cycles.Type: ApplicationFiled: May 23, 2019Publication date: November 26, 2020Inventors: Gregory Theodore GIBSON, Algird Michael GUDAITIS
-
Publication number: 20200127440Abstract: A wearable display includes left and right display lens systems each having imaging units configured for augmented reality imaging. The imaging units include an emitter structure, one or more optical elements, a display optic, an electrically alterable scanning optical element and a calibration light sensor. The emitter structure has one or more light sources configured to emit light. The optical elements direct the light along a light path in the imaging unit. The scanning optical element receives the light from the optical elements and directs it to the display optic. The scanning optical element scans in one or more dimensions to direct the light through an imaging optic that directs the light into the display optic. The calibration light sensor is located at a point along the light path between the emitter structure and the scanning optical element and receives a portion of light from one of the optical elements.Type: ApplicationFiled: October 19, 2018Publication date: April 23, 2020Inventors: Gregory Theodore GIBSON, Scott Jeffrey WOLTMAN
-
Patent number: 10627899Abstract: Eye tracking system for use in a visible light display device incorporates and/or use one or more silicon photomultiplier (SiPM) sensor and an infrared module of a microelectromechanical (MEMs)-based scanner. The infrared module emits a beam of photons, where at least some of the photons are directed towards a user's eye while the eye tracking system is being used. The SiPM sensor(s) capture a reflection that emanates off of the user's eye.Type: GrantFiled: February 9, 2018Date of Patent: April 21, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Raymond Kirk Price, Kai Zang, Gregory Theodore Gibson
-
Patent number: 10608409Abstract: A wearable display includes left and right display lens systems each having imaging units configured for augmented reality imaging. The imaging units include an emitter structure, one or more optical elements, a display optic, an electrically alterable scanning optical element and a calibration light sensor. The emitter structure has one or more light sources configured to emit light. The optical elements direct the light along a light path in the imaging unit. The scanning optical element receives the light from the optical elements and directs it to the display optic. The scanning optical element scans in one or more dimensions to direct the light through an imaging optic that directs the light into the display optic. The calibration light sensor is located at a point along the light path between the emitter structure and the scanning optical element and receives a portion of light from one of the optical elements.Type: GrantFiled: October 19, 2018Date of Patent: March 31, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Gregory Theodore Gibson, Scott Jeffrey Woltman
-
Patent number: 10551914Abstract: Eye tracking system incorporates and/or uses one or more silicon photomultiplier (SiPM) sensor and an infrared module of a microelectromechanical (MEMs)-based scanner. The infrared module emits a beam of photons, where at least some of the photons are directed towards a user's eye while the eye tracking system is being used. The SiPM sensor(s) capture a reflection that emanates off of the user's eye.Type: GrantFiled: February 9, 2018Date of Patent: February 4, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Raymond Kirk Price, Kai Zang, Gregory Theodore Gibson
-
Publication number: 20200004011Abstract: Examples are disclosed that relate to scanning display systems. One example provides a display device comprising a controller, a light source, and a scanning mirror system. The scanning mirror system comprises a scanning mirror configured to scan light from the light source in at least one direction at a resonant frequency of the scanning mirror, and an electromechanical actuator system coupled with the scanning mirror and being controllable by the controller to adjust the resonant frequency of the scanning mirror.Type: ApplicationFiled: June 27, 2018Publication date: January 2, 2020Applicant: Microsoft Technology Licensing, LLCInventors: Mark Alan CHAMPION, Utku BARAN, Joshua Owen MILLER, Wyatt Owen DAVIS, Gregory Theodore GIBSON
-
Publication number: 20190250703Abstract: Eye tracking system incorporates and/or uses one or more silicon photomultiplier (SiPM) sensor and an infrared module of a microelectromechanical (MEMs)-based scanner. The infrared module emits a beam of photons, where at least some of the photons are directed towards a user's eye while the eye tracking system is being used. The SiPM sensor(s) capture a reflection that emanates off of the user's eye.Type: ApplicationFiled: February 9, 2018Publication date: August 15, 2019Inventors: Raymond Kirk Price, Kai Zang, Gregory Theodore Gibson
-
Publication number: 20190250704Abstract: Eye tracking system for use in a visible light display device incorporates and/or use one or more silicon photomultiplier (SiPM) sensor and an infrared module of a microelectromechanical (MEMs)-based scanner. The infrared module emits a beam of photons, where at least some of the photons are directed towards a user's eye while the eye tracking system is being used. The SiPM sensor(s) capture a reflection that emanates off of the user's eye.Type: ApplicationFiled: February 9, 2018Publication date: August 15, 2019Inventors: Raymond Kirk Price, Kai Zang, Gregory Theodore Gibson
-
Patent number: 10303248Abstract: Examples are disclosed herein that are related to eye tracking using scanned beam imaging and multiple photodetectors. One example provides an eye tracking system, comprising an infrared light source, scanning optics configured to scan light from the infrared light source across a region comprising a user's cornea, and a plurality of photodetectors, each photodetector being configured to detect infrared light reflected from the user's cornea at a corresponding angle.Type: GrantFiled: April 28, 2017Date of Patent: May 28, 2019Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Gregory Theodore Gibson, Joshua Owen Miller