Patents by Inventor Gregory W. Warren

Gregory W. Warren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9347072
    Abstract: Nucleic acid molecules encoding novel Vip3 toxins that are highly active against a wide range of lepidopteran insect pests are disclosed. The nucleic acid molecules can be used to transform various prokaryotic and eukaryotic organisms to express the Vip3 toxins. These recombinant organisms can be used to control lepidopteran insects in various environments.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: May 24, 2016
    Assignee: Syngenta Participations Ag
    Inventors: Gregory W. Warren, Vance Cary Kramer, Frank Arthur Shotkoski, Zhicheng Shen
  • Publication number: 20140212394
    Abstract: Nucleic acid molecules encoding novel Vip3 toxins that are highly active against a wide range of lepidopteran insect pests are disclosed. The nucleic acid molecules can be used to transform various prokaryotic and eukaryotic organisms to express the Vip3 toxins. These recombinant organisms can be used to control lepidopteran insects in various environments.
    Type: Application
    Filed: February 10, 2014
    Publication date: July 31, 2014
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Gregory W. WARREN, Vance Cary KRAMER, Frank Arthur SHOTKOSKI, Zhicheng SHEN
  • Patent number: 8686232
    Abstract: Nucleic acid molecules encoding novel Vip3 toxins that are highly active against a wide range of lepidopteran insect pests are disclosed. The nucleic acid molecules can be used to transform various prokaryotic and eukaryotic organisms to express the Vip3 toxins. These recombinant organisms can be used to control lepidopteran insects in various environments.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: April 1, 2014
    Assignee: Syngenta Participations AG
    Inventors: Zhicheng Shen, Gregory W. Warren, Vance Kramer, Frank Shotkoski
  • Patent number: 8598117
    Abstract: A novel pesticidal toxin that is highly active against a wide range of lepidopteran insect pests is disclosed. The DNA encoding the pesticidal toxin can be used to transform various prokaryotic and eukaryotic organisms to express the pesticidal toxin. These recombinant organisms can be used to control lepidopteran insects in various environments.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 3, 2013
    Assignee: Syngenta Participations AG
    Inventors: Paul J. Miles, Vance Cary Kramer, Shen Zhicheng, Frank Arthur Shotkoski, Gregory W. Warren
  • Publication number: 20090205075
    Abstract: Compositions and methods for targeting polypeptides to plastids are provided. Compositions comprise plastid transit peptides as well as nucleotide sequences encoding such transit peptides and variants thereof. Compositions further comprise DNA constructs comprising a nucleotide sequence encoding the plastid transit peptide operably linked to a nucleotide sequence encoding a polypeptide of interest. These DNA constructs find use in expression and targeting of the polypeptide of interest to a plastid. Compositions also comprise expression cassettes, vectors, transformed plants, transformed plant cells, and stably transformed plant seeds wherein a polypeptide of interest is targeted to a plastid by the plastid transit peptide of the invention.
    Type: Application
    Filed: January 15, 2009
    Publication date: August 13, 2009
    Inventors: Stacy Miles, John Hipskind, Gregory W. Warren
  • Publication number: 20040133942
    Abstract: A novel pesticidal toxin that is highly active against a wide range of lepidopteran insect pests is disclosed. The DNA encoding the pesticidal toxin can be used to transform various prokaryotic and eukaryotic organisms to express the pesticidal toxin. These recombinant organisms can be used to control lepidopteran insects in various environment.
    Type: Application
    Filed: September 27, 2003
    Publication date: July 8, 2004
    Inventors: Paul Miles, Vance Kramer, Zhicheng Shen, Frank Shotkoski, Gregory W. Warren
  • Patent number: 6403865
    Abstract: Methods for transformation of maize with nucleic acid sequences of interest are disclosed. The method involves subjecting immature zygotic embryos or Type I callus to high velocity microprojectile bombardment. The method is capable of producing transformed maize lines of commercial importance and their hybrid combinations.
    Type: Grant
    Filed: May 10, 1995
    Date of Patent: June 11, 2002
    Assignee: Syngenta Investment Corp.
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Vance C. Kramer, Gregory W. Warren, Stephen V. Evola, Lyle D. Crossland, Martha S. Wright, Ellis J. Merlin, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie, Nadine Carozzi, Annick De Framond, James O. Linder, Robert L. Miller, Bruce W. Skillings, Alan W. Mousel, Albert R. Hornbrook, Christopher P. Clucas, Moez Rajabali Meghji, Andreas H. Tanner, Francis E. Cassagne, Gilles Pollini, Terry Ray Colbert, Francis P. Cammack
  • Patent number: 6320100
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: November 20, 2001
    Assignee: Syngenta Investments, Inc.
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6281413
    Abstract: Novel nucleic acid sequences isolated from Photorhabdus luminescens, whose expression results in novel insecticidal toxins, are disclosed herein. The invention also discloses compositions and formulations containing the insecticidal toxins that are capable of controlling insect pests. The invention is further drawn to methods of making the toxins and to methods of using the nucleotide sequences, for example in microorganisms to control insect pests or in transgenic plants to confer insect resistance.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: August 28, 2001
    Assignee: Syngenta Participations AG
    Inventors: Vance Cary Kramer, Michael Kent Morgan, Arne Robert Anderson, Hope Prim Hart, Gregory W. Warren, Martha M. Dunn, Jeng Shong Chen
  • Patent number: 6137033
    Abstract: The genes encoding a novel class of insectecidal proteins have been isolated and characterized from a strain of Bacillus thuringiensis. Both the nucleic and amino acid sequences for the proteins are disclosed. The nucleic acid molcules are utilized in the transformation of host microorganisms and production of trangenic plants which are resistant to insects. Also, the gene encoding for the insect's receptor of the insecticide protein has been isolated and characterized. Novel processes and methods for controlling plants pests are provided.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: October 24, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Juan J. Estruch, Gregory W. Warren, Nalini M. Desai, Michael G. Koziel, Gordon J. Nye
  • Patent number: 6107279
    Abstract: The genes encoding a novel class of insecticidal proteins have been isolated and characterized from a strain of Bacillus thuringiensis. Both the nucleic and amino acid sequences for the proteins are disclosed. The nucleic acid molecules are utilized in the transformation of host microorganisms and production of transgenic plants which are resistant to insects. Also, the gene encoding for the insect's receptor of the insecticidal protein has been isolated and characterized. Novel processes and methods for controlling plants pests are provided.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: August 22, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Juan J. Estruch, Cao-Guo Yu, Gregory W. Warren, Nalini M. Desai, Michael G. Koziel, Gordon J. Nye
  • Patent number: 6075185
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 13, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6066783
    Abstract: The present invention is drawn to pesticidal strains and proteins. Bacillus strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: May 23, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Gregory W. Warren, Michael G. Koziel, Martha A. Mullins, Gordon J. Nye, Brian Carr, Nalini M. Desai, Kristy Kostichka
  • Patent number: 6051760
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: April 18, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6018104
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: January 25, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Vance C. Kramer, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 5990383
    Abstract: The present invention is drawn to pesticidal strains and proteins. Bacillus strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: November 23, 1999
    Assignee: Novartis Finance Corporation
    Inventors: Gregory W. Warren, Michael G. Koziel, Martha A. Mullins, Gordon J. Nye, Brian Carr, Nalini M. Desai, Kristy Kostichka, Nicholas B. Duck, Juan J. Estruch
  • Patent number: 5889174
    Abstract: The present invention is drawn to pesticidal strains and proteins. Bacillus strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 30, 1999
    Assignee: Novartis Finance Corporation
    Inventors: Gregory W. Warren, Michael G. Koziel, Martha A. Mullins, Gordon J. Nye, Brian Carr, Nalini M. Desai, Kristy Kostichka, Juan J. Estruch
  • Patent number: 5888801
    Abstract: The present invention is drawn to pesticidal strains and proteins. Bacillus strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 30, 1999
    Assignee: Novartis Finance Corporation
    Inventors: Gregory W. Warren, Martha A. Mullins, Annick J. de Framond
  • Patent number: 5877012
    Abstract: The present invention is drawn to a novel class of proteins, and their receptors. Novel processes, assays and methods for controlling plant pests are provided.
    Type: Grant
    Filed: April 3, 1997
    Date of Patent: March 2, 1999
    Assignee: Novartis Finance Corporation
    Inventors: Juan J. Estruch, Cao-Guo Yu, Gregory W. Warren, Nalini M. Desai, Michael G. Koziel, Gordon J. Nye
  • Patent number: 5872212
    Abstract: The present invention is drawn to pesticidal strains and proteins. Bacillus strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: February 16, 1999
    Assignee: Novartis Finance Corporation
    Inventors: Gregory W. Warren, Michael G. Koziel, Martha A. Mullins, Gordon J. Nye, Brian Carr, Nalini M. Desai, Kristy Kostichka