Patents by Inventor Gregory Whited
Gregory Whited has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7504250Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).Type: GrantFiled: January 16, 2006Date of Patent: March 17, 2009Assignee: E. I. du Pont de Nemours and CompanyInventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Whited
-
Patent number: 7452710Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).Type: GrantFiled: February 13, 2006Date of Patent: November 18, 2008Assignee: E.I. du Pont de Nemours and CompanyInventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Whited
-
Publication number: 20070213550Abstract: The present invention is related to cis-diols and biological methods of producing cis-diols. The present invention further relates to processes for subsequently converting such silane cis-diols to the more stable acetonide derivatives, as well as a process for converting silane cis-diols to the corresponding catechols and the compounds produced thereby. The present invention also provides chemical methods for the conversion of said silane cis-diols and acetonide compounds to epoxy, saturated and otherwise modified derivatives. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims.Type: ApplicationFiled: December 28, 2006Publication date: September 13, 2007Inventors: Joseph Mcauliffe, Gregory Whited, Wyatt Smith
-
Publication number: 20070213541Abstract: The present invention is related to cis-diols and biological methods of producing cis-diols. The present invention further relates to processes for subsequently converting such silane cis-diols to the more stable acetonide derivatives, as well as a process for converting silane cis-diols to the corresponding catechols and the compounds produced thereby. The present invention also provides chemical methods for the conversion of said silane cis-diols and acetonide compounds to epoxy, saturated and otherwise modified derivatives. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).Type: ApplicationFiled: December 28, 2006Publication date: September 13, 2007Inventors: Joseph McAuliffe, Gregory Whited, Wyatt Smith
-
Publication number: 20060148053Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).Type: ApplicationFiled: January 16, 2006Publication date: July 6, 2006Inventors: Mark Emptage, Sharon Haynie, Lisa Laffend, Jeff Pucci, Gregory Whited
-
Publication number: 20060121588Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).Type: ApplicationFiled: February 13, 2006Publication date: June 8, 2006Inventors: Mark Emptage, Sharon Haynie, Lisa Laffend, Jeff Pucci, Gregory Whited
-
Publication number: 20060003061Abstract: A browning agent for foodstuffs having at least two carbonyl groups is disclosed. A method for using the browning agent in or on a substrate is also disclosed. The browning agent may be coated onto foodstuffs such as biscuits, pizza, pie coverings or hash brown potatoes and heated by microwave or convection oven to induce browning.Type: ApplicationFiled: February 21, 2003Publication date: January 5, 2006Inventors: Matthew Boston, Gregory Whited
-
Publication number: 20050079617Abstract: A method is disclosed for restoring a Glu+ phenotype to a PTS?/Glu? bacterial cell which was originally capable of utilizing a phosphotransferase transport system (PTS) for carbohydrate transport. Bacterial cells comprising the Glu+ phenotype have modified endogenous chromosomal regulatory regions which are operably linked to polynucleotides encoding galactose permeases and glucokinases.Type: ApplicationFiled: December 3, 2003Publication date: April 14, 2005Inventors: Marguerite Cervin, Philippe Soucaille, Fernando Valle, Gregory Whited
-
Publication number: 20050014238Abstract: The present invention relates to improved methods and reagents for the production of 1,3-propanediol. In particular, the present invention provides novel thermophilic organisms and thermostable enzymes capable of catalyzing the fermentation of glycerol to 1,3-propanediol. The present invention also relates to methods of isolating such thermophilic organisms, methods of cloning polynucleotides that encode such enzymes, polynucleotides encoding such enzymes, and methods of using such enzymes and organisms for the production of 1,3-propanediol.Type: ApplicationFiled: August 2, 2004Publication date: January 20, 2005Inventors: Markus Seyfried, Juergen Wiegel, Gregory Whited
-
Patent number: 6803218Abstract: The present invention relates to improved methods and reagents for the production of 1,3-propanediol. In particular, the present invention provides novel thermophilic organisms and thermostable enzymes cable of catalyzing the fermentation of glycerol to 1,3-propanediol. The present invention also relates to methods of isolating such thermophilic organisms, methods of cloning polynucleotides that encode such enzymes, polynucleotides encoding such enzymes, and methods of using such enzymes and organisms for the production of 1,3-propanediol.Type: GrantFiled: September 24, 1999Date of Patent: October 12, 2004Assignee: Genencor Intl., Inc.Inventors: Markus Seyfried, Juergen Wiegel, Gregory Whited
-
Patent number: 6514733Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).Type: GrantFiled: August 18, 2000Date of Patent: February 4, 2003Assignee: E. I. du Pont de Nemours and CompanyInventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Whited
-
Publication number: 20020132311Abstract: The present invention relates to improved methods and reagents for the production of 1,3-propanediol. In particular, the present invention provides novel thermophilic organisms and thermostable enzymes capable of catalyzing the fermentation of glycerol to 1,3-propanediol. The present invention also relates to methods of isolating such thermophilic organisms, methods of cloning polynucleotides that encode such enzymes, polynucleotides encoding such enzymes, and methods of using such enzymes and organisms for the production of 1,3-propanediol.Type: ApplicationFiled: October 18, 2001Publication date: September 19, 2002Applicant: Genencor International, Inc.Inventors: Markus Seyfried, Juergen Wiegel, Gregory Whited