Patents by Inventor Gretja Schnell

Gretja Schnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220331418
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 20, 2022
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Michael J. Gale, JR., Gretja Schnell, Yueh-Ming Loo
  • Patent number: 11324817
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: May 10, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Michael J. Gale, Jr., Gretja Schnell, Yueh-Ming Loo
  • Publication number: 20200276294
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Application
    Filed: October 7, 2019
    Publication date: September 3, 2020
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Michael J. Gale, JR., Gretja Schnell, Yueh-Ming Loo
  • Patent number: 10434164
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: October 8, 2019
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Michael J. Gale, Jr., Gretja Schnell, Yueh-Ming Loo
  • Publication number: 20180104325
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Application
    Filed: September 21, 2017
    Publication date: April 19, 2018
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Michael J. Gale, JR., Gretja Schnell, Yueh-Ming Loo
  • Patent number: 9775894
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: October 3, 2017
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Michael J. Gale, Jr., Gretja Schnell, Yueh-Ming Loo
  • Publication number: 20150017207
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Michael J. Gale, JR., Gretja Schnell, Yueh-Ming Loo