Patents by Inventor Grigoriy Gomelskiy

Grigoriy Gomelskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6909504
    Abstract: An apparatus, method, and system are disclosed to analyze samples materials using triboluminescent technology. A mechanical activation knot is provided that comprises an optical window, a membrane, and a device that supplies a constant pressure of gas on the zone of activation. A sample is placed between the membrane and the optical window. The optical window is rotated along its z-axis. The friction between the sample and the optical window generates triboluminescence and associated optical emissions. Optical emissions may be distributed on the spectrum by a spectrograph, a monochromator, or a collection of filters, and then fixed by the charge coupled device, a photodiode, or a photomultiplier tube. Then, the results (data) are incorporated into different mathematical algorithms or programs with the help of computers or other computation technologies. The final results (the output) may be compared among themselves or with reference data stored in a computer's memory.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: June 21, 2005
    Inventor: Grigoriy Gomelskiy
  • Publication number: 20050041246
    Abstract: An apparatus, method, and system are disclosed to analyze samples materials using triboluminescent technology. A mechanical activation knot is provided that comprises an optical window, a membrane, and a device that supplies a constant pressure of gas on the zone of activation. A sample is placed between the membrane and the optical window. The optical window is rotated along its z-axis. The friction between the sample and the optical window generates triboluminescence and associated optical emissions. Optical emissions may be distributed on the spectrum by a spectrograph, a monochromator, or a collection of filters, and then fixed by the charge coupled device, a photodiode, or a photomultiplier tube. Then, the results (data) are incorporated into different mathematical algorithms or programs with the help of computers or other computation technologies. The final results (the output) may be compared among themselves or with reference data stored in a computer's memory.
    Type: Application
    Filed: March 24, 2004
    Publication date: February 24, 2005
    Inventor: Grigoriy Gomelskiy
  • Patent number: 6760104
    Abstract: An apparatus, method, and system are disclosed to analyze samples materials using triboluminescent technology. A mechanical activation knot is provided that comprises an optical window, a membrane, and a device that supplies a constant pressure of gas on the zone of activation. A sample is placed between the membrane and the optical window. The optical window is rotated along its z-axis. The friction between the sample and the optical window generates triboluminescence and associated optical emissions. Optical emissions may be distributed on the spectrum by a spectrograph, a monochromator, or a collection of filters, and then fixed by the charge coupled device, a photodiode, or a photomultiplier tube. Then, the results (data) are incorporated into different mathematical algorithms or programs with the help of computers or other computation technologies. The final results (the output) may be compared among themselves or with reference data stored in a computer's memory.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: July 6, 2004
    Inventor: Grigoriy Gomelskiy
  • Publication number: 20030016351
    Abstract: An apparatus, method, and system are disclosed to analyze samples materials using triboluminescent technology. A mechanical activation knot is provided that comprises an optical window, a membrane, and a device that supplies a constant pressure of gas on the zone of activation. A sample is placed between the membrane and the optical window. The optical window is rotated along its z-axis. The friction between the sample and the optical window generates triboluminescence and associated optical emissions. Optical emissions may be distributed on the spectrum by a spectrograph, a monochromator, or a collection of filters, and then fixed by the charge coupled device, a photodiode, or a photomultiplier tube. Then, the results (data) are incorporated into different mathematical algorithms or programs with the help of computers or other computation technologies. The final results (the output) may be compared among themselves or with reference data stored in a computer's memory.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 23, 2003
    Inventor: Grigoriy Gomelskiy