Patents by Inventor Grigory Adamovsky

Grigory Adamovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9291774
    Abstract: A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: March 22, 2016
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Grigory Adamovsky, Susan Y. Wrbanek
  • Patent number: 8935107
    Abstract: A compact shock sensing system and method that employ a light sheet generator that can be used either as a solo aerodynamic shock detector or in a combination with a scanning mode shock sensor is disclosed. This shock sensing system and method can be used to detect and track unstable and travelling shocks in high speed aerodynamic flows, such as those found in supersonic inlets.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 13, 2015
    Assignee: The United States of America as Represented by the Adminstrator of National Aeronautics and Space Adminstration
    Inventors: Grigory Adamovsky, Roger P Tokars
  • Patent number: 6999221
    Abstract: A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: February 14, 2006
    Assignees: Alabama A&M University, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sergey S. Sarkisov, Michael J. Curley, Grigory Adamovsky, Sergey S. Sarkisov, Jr., Aisha B. Fields
  • Patent number: 5715047
    Abstract: A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight.Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation.The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: February 3, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Grigory Adamovsky
  • Patent number: 4995697
    Abstract: A fiber optic interferometer utilizes a low coherence LED laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.
    Type: Grant
    Filed: September 7, 1989
    Date of Patent: February 26, 1991
    Assignee: The United States of America as represented by the administrator of the National Aeronautics and Space Administration
    Inventor: Grigory Adamovsky