Patents by Inventor Gruffudd Trefor Williams

Gruffudd Trefor Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913111
    Abstract: A method of fabricating a polycrystalline CVD synthetic diamond wafer is disclosed. A first polycrystalline CVD synthetic diamond wafer is grown using a CVD process to a first thickness on a substrate. A second smaller wafer is cut from the polycrystalline CVD synthetic diamond wafer. The second smaller wafer is located on a carrier, and further polycrystalline CVD synthetic diamond material is grown on the second smaller wafer to a second thickness to give a polycrystalline CVD synthetic diamond material having a total thickness of the combined first and second thicknesses.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Element Six Technologies Limited
    Inventors: Gruffudd Trefor Williams, Richard Stuart Balmer
  • Patent number: 11873224
    Abstract: A polycrystalline CVD synthetic diamond material is provided that has an average thermal conductivity at room temperature through a thickness of the polycrystalline CVD synthetic diamond material of between 1700 and 2400 Wm?1K?1, a thickness of at least 2.5 mm and a visible transmittance through the thickness of the polycrystalline CVD synthetic diamond of at least 25%. A wafer comprising the material is also provided, wherein at least 70% of a total area of the wafer has the properties of the polycrystalline CVD synthetic diamond material. A method for fabricating the wafer is also disclosed.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: January 16, 2024
    Assignee: Element Six Technologies Limited
    Inventors: Gruffudd Trefor Williams, Richard Stuart Balmer, Joseph Michael Dodson
  • Publication number: 20220389611
    Abstract: A method of fabricating a CVD synthetic diamond material, the method comprising providing a compacted diamond carrier material consisting of compacted non-intergrown diamond particles substantially free of a second phase, and growing CVD synthetic diamond material on a surface of the compacted diamond carrier material. Composite diamond bodies made by the method are also described.
    Type: Application
    Filed: December 15, 2020
    Publication date: December 8, 2022
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: GRUFFUDD TREFOR WILLIAMS, CHRISTOPHER JOHN HOWARD WORT
  • Publication number: 20220290297
    Abstract: A method of fabricating a polycrystalline CVD synthetic diamond wafer is disclosed. A first polycrystalline CVD synthetic diamond wafer is grown using a CVD process to a first thickness on a substrate. A second smaller wafer is cut from the polycrystalline CVD synthetic diamond wafer. The second smaller wafer is located on a carrier, and further polycrystalline CVD synthetic diamond material is grown on the second smaller wafer to a second thickness to give a polycrystalline CVD synthetic diamond material having a total thickness of the combined first and second thicknesses.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 15, 2022
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: Gruffudd Trefor WILLIAMS, Richard Stuart BALMER
  • Publication number: 20210206647
    Abstract: A polycrystalline CVD synthetic diamond material is provided that has an average thermal conductivity at room temperature through a thickness of the polycrystalline CVD synthetic diamond material of between 1700 and 2400 Wm?1K?1, a thickness of at least 2.5 mm and a visible transmittance through the thickness of the polycrystalline CVD synthetic diamond of at least 25%. A wafer comprising the material is also provided, wherein at least 70% of a total area of the wafer has the properties of the polycrystalline CVD synthetic diamond material. A method for fabricating the wafer is also disclosed.
    Type: Application
    Filed: May 14, 2019
    Publication date: July 8, 2021
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: GRUFFUDD TREFOR WILLIAMS, RICHARD STUART BALMER, JOSEPH MICHAEL DODSON
  • Patent number: 9478938
    Abstract: A method of fabricating a polycrystalline CVD synthetic diamond material having an average thermal conductivity at room temperature through a thickness of the polycrystalline CVD synthetic diamond material of at least 2000 Wm?1K?1, the method comprising: loading a refractory metal substrate into a CVD reactor; locating a refractory metal guard ring around a peripheral region of the refractory metal substrate, the refractory metal guard ring defining a gap between an edge of the refractory metal substrate and the refractory metal guard ring having a width 1.5 mm to 5.0 mm; introducing microwaves into the CVD reactor at a power such that the power density in terms of power per unit area of the refractory metal substrate is in a range 2.5 to 4.5 W mm?2; introducing process gas into the CVD reactor wherein the process gas within the CVD reactor comprises a nitrogen concentration in a range 600 ppb to 1500 ppb calculated as molecular nitrogen N2, a carbon containing gas concentration in a range 0.5% to 3.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 25, 2016
    Assignee: Element Six Technologies Limited
    Inventors: Gruffudd Trefor Williams, Joseph Michael Dodson, Paul Nicolas Inglis, Christopher John Kelly
  • Publication number: 20150222087
    Abstract: A method of fabricating a polycrystalline CVD synthetic diamond material having an average thermal conductivity at room temperature through a thickness of the polycrystalline CVD synthetic diamond material of at least 2000 Wm?1K?1, the method comprising: loading a refractory metal substrate into a CVD reactor; locating a refractory metal guard ring around a peripheral region of the refractory metal substrate, the refractory metal guard ring defining a gap between an edge of the refractory metal substrate and the refractory metal guard ring having a width 1.5 mm to 5.0 mm; introducing microwaves into the CVD reactor at a power such that the power density in terms of power per unit area of the refractory metal substrate is in a range 2.5 to 4.5 W mm?2; introducing process gas into the CVD reactor wherein the process gas within the CVD reactor comprises a nitrogen concentration in a range 600 ppb to 1500 ppb calculated as molecular nitrogen N2, a carbon containing gas concentration in a range 0.5% to 3.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 6, 2015
    Inventors: Gruffudd Trefor Williams, Joseph Michael Dodson, Paul Nicolas Inglis, Christopher John Kelly