Patents by Inventor Guan-Ming Su

Guan-Ming Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962760
    Abstract: A set of tensor-product B-Spline (TPB) basis functions is determined. A set of selected TPB prediction parameters to be used with the set of TPB basis functions for generating predicted image data in mapped images from source image data in source images of a source color grade is generated. The set of selected TPB prediction parameters is generated by minimizing differences between the predicted image data in the mapped images and reference image data in reference images of a reference color grade. The reference images correspond to the source images and depict same visual content as depicted by the source images. The set of selected TPB prediction parameters is encoded in a video signal as a part of image metadata along with the source image data in the source images. The mapped images are caused to be reconstructed and rendered with a recipient device of the video signal.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 16, 2024
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Guan-Ming Su, Harshad Kadu, Qing Song, Neeraj J. Gadgil
  • Publication number: 20240114153
    Abstract: A first image and a second image of different dynamic ranges are derived from the same source image. Based on a chroma sampling format of the first image, it is determined whether edge preserving filtering is to be used to generate chroma upsampled image data in a reconstructed image. If so, image metadata for performing the edge preserving filtering is generated. The first image, the second image and the image metadata are encoded into an image data container to enable a recipient device to generate the reconstructed image.
    Type: Application
    Filed: September 1, 2023
    Publication date: April 4, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Anustup Kumar Atanu CHOUDHURY, Guan-Ming SU
  • Publication number: 20240114127
    Abstract: Methods, systems, and devices implement intra-prediction for hexagonally-sampled compression and decompression of videos and images having a regular grid of hexagonally-shaped pixels. For encoding, a prediction unit (PU) shape is selected at a sequence level from the group consisting of parallelogram, zigzag-square, hexagonal super-pixel, a rectangular zigzag and an arrow, and the hexagonally-sampled image is divided into regions based on the PU shape. For each region: a prediction mode and a PU size are determined; reference pixels are determined for each predicted pixel in the PU shape based on the prediction mode; a weighted factor is determined for each of the reference pixels based on a distance between the reference pixel and the predicted pixel; and a predicted value of each of the predicted pixels in the PU shape is determined using the corresponding reference pixels and the weighted factors.
    Type: Application
    Filed: February 10, 2022
    Publication date: April 4, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Zhaobin ZHANG, Neeraj J. GADGIL, Guan-Ming SU
  • Publication number: 20240095893
    Abstract: A first reshaping mapping is performed on a first image represented in a first domain to generate a second image represented in a second domain. The first domain is of a first dynamic range different from a second dynamic range of which the second domain is. A second reshaping mapping is performed on the second image represented in the second domain to generate a third image represented in the first domain. The third image is perceptually different from the first image in at least one of: global contrast, global saturation, local contrast, local saturation, etc. A display image is derived from the third image and rendered on a display device.
    Type: Application
    Filed: January 26, 2022
    Publication date: March 21, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Guan-Ming SU, Harshad KADU, Per Jonas Andreas KLITTMARK, Tao CHEN
  • Patent number: 11936888
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Grant
    Filed: November 10, 2023
    Date of Patent: March 19, 2024
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240089474
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 14, 2024
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240080465
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Patent number: 11895416
    Abstract: A device includes an electronic processor configured to define a first set of sample pixels from a set of sample pixels determined from received video data according to a first electro-optical transfer function (EOTF) in a first color representation of a first color space; convert the first set of sample pixels to a second EOTF via a mapping function, producing a second set of sample pixels according to the second EOTF; convert the first and second set of sample pixels from the first color representation to a second color representation of the first color space; determine a backward reshaping function by repeatedly applying and adjusting a sample backward reshaping function so as to minimize a difference between predicted pixel values obtained by applying the sample backward reshaping function to the pixels of the converted first set and the pixels of the converted second set.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: February 6, 2024
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Guan-Ming Su, Harshad Kadu, Neeraj J. Gadgil, Qing Song, Yoon Yung Lee
  • Publication number: 20240031587
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240015315
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: June 13, 2023
    Publication date: January 11, 2024
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Patent number: 11871015
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: January 9, 2024
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240007682
    Abstract: An input image of a first bit depth in an input domain is received. Forward reshaping operations are performed on the input image to generate a forward reshaped image of a second bit depth in a reshaping domain. An image container containing image data derived from the forward reshaped image is encoded into an output video signal of the second bit depth.
    Type: Application
    Filed: November 10, 2021
    Publication date: January 4, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Janos HORVATH, Harshad KADU, Guan-Ming SU
  • Patent number: 11838531
    Abstract: A first predictor is applied to an input image to generate first-stage predicted codewords approximating prediction target codewords of a prediction target image. Second-stage prediction target values are created by performing an inverse cascade operation on the prediction target codewords and the first-stage predicted codewords. A second predictor is applied to the input image to generate second-stage predicted values approximating the second-stage prediction target values. Multiple sets of cascade prediction coefficients are generated to comprise first and second sets of cascade prediction coefficients specifying the first and second predictors. The multiple sets of cascade prediction coefficients are encoded, in a video signal, as image metadata. The video signal is further encoded with the input image.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: December 5, 2023
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Harshad Kadu, Guan-Ming Su
  • Publication number: 20230388555
    Abstract: In a cloud-based system for encoding high dynamic range (HDR) video, each node receives a video segment and bumper frames. Each segment is subdivided into primary scenes and secondary scenes to derive scene-based forward reshaping functions that minimize the amount of reshaping-related metadata when coding the video segment. When a parent scene of a secondary scene is processed by two or more neighboring nodes, initial forward reshaping functions and trim-pass correction parameters are adjusted using reference tone-mapping functions and updated scene-based trim-pass correction parameters.
    Type: Application
    Filed: September 17, 2021
    Publication date: November 30, 2023
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Harshad Kadu, Guan-Ming Su
  • Publication number: 20230368344
    Abstract: Using a standard-based RGB to YCbCr color transform a new RGB to YCC 3×3 transformation matrix and a 3×1 offset vector are derived under a set of coding-efficiency constraints. The new RGB to YCC 3×3 transform comprises a luminance scaling factor and a 2×2 chroma sub-matrix that preserves the energy of the standard-based RGB to YCbCr transform while maintaining or improving coding efficiency. It also adds support for an authorization or watermarking mechanism in streaming video applications. Examples of using the new color transform using image reshaping are also provided.
    Type: Application
    Filed: October 14, 2021
    Publication date: November 16, 2023
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Guan-Ming SU
  • Publication number: 20230370646
    Abstract: A global index value is generated for selecting a global reshaping function for an input image of a relatively low dynamic range using luma codewords in the input image. Image filtering is applied to the input image to generate a filtered image. The filtered values of the filtered image provide a measure of local brightness levels in the input image. Local index values are generated for selecting specific local reshaping functions for the input image using the global index value and the filtered values of the filtered image. A reshaped image of a relatively high dynamic range is generated by reshaping the input image with the specific local reshaping functions selected using the local index values.
    Type: Application
    Filed: October 1, 2021
    Publication date: November 16, 2023
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Tsung-Wei Huang, Guan-Ming Su, Neeraj J. Gadgil
  • Patent number: 11818372
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: November 14, 2023
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Patent number: 11818400
    Abstract: A backward reshaping mapping table is initially generated as an inverse of a forward reshaping mapping table. The backward reshaping mapping table is updated by replacing the content-mapped luminance codewords with forward reshaped luminance codewords generated by applying a luminance forward mapping to the sampled luminance codewords. The luminance forward mapping is constructed from the forward reshaping mapping table. The backward reshaping mapping table and the luminance forward mapping are used to generate backward reshaping mappings for creating a reconstructed image from a forward reshaped image. The forward reshaped image is encoded, in a video signal, along with image metadata specifying the backward reshaping mappings. A recipient device of the video signal applies the backward reshaping mappings to the forward reshaped image to create the reconstructed image of the second dynamic range.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: November 14, 2023
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Qing Song, Arun Raj, Guan-Ming Su
  • Publication number: 20230343100
    Abstract: In a cloud-based system for encoding high dynamic range (HDR) video, each node receives a video segment and bumper frames. Each segment is subdivided into primary scenes and secondary scenes to derive scene-based forward reshaping functions that minimize the amount of reshaping-related metadata when coding the video segment, while maintaining temporal continuity among scenes processed by multiple nodes. Methods to generate scene-based forward and backward reshaping functions to optimize video coding and improve the coding efficiency of reshaping-related metadata are also examined.
    Type: Application
    Filed: September 17, 2021
    Publication date: October 26, 2023
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Harshad Kadu, Guan-Ming Su, Neeraj J. Gadgil, Tsung-Wei Huang
  • Publication number: 20230308667
    Abstract: A forward reshaping mapping is generated to map a source image to a corresponding forward reshaped image of a lower dynamic range. The source image is spatially downsampled to generate a resized image into which noise is injected to generate a noise injected image. The forward reshaping mapping is applied to map the noise injected image to generate a noise embedded image of the lower dynamic range. A video signal is encoded with the noise embedded image and delivered to a recipient device for the recipient device to render a display image generated from the noise embedded image.
    Type: Application
    Filed: August 5, 2021
    Publication date: September 28, 2023
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Neeraj J. GADGIL, Guan-Ming SU, Harshad KADU