Patents by Inventor Guang-Bo Gao

Guang-Bo Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10128228
    Abstract: A semiconductor device includes a type IV semiconductor base substrate, a first type III-V semiconductor layer formed over the base substrate, a second type III-V semiconductor layer formed over the first type III-V semiconductor layer. A two-dimensional charge carrier gas forms at an interface between the first and second type III-V semiconductor layers. First and second electrically conductive device terminals are in ohmic contact with the two-dimensional charge carrier gas. A gate electrode is formed on the first type III-V semiconductor layer and is configured to control a conduction state of the two-dimensional charge carrier gas. An electrically insulating region is disposed over the second type III-V semiconductor layer and is laterally between the gate electrode and the second electrically conductive device terminal. At least one diode is formed on the electrically insulating region and is electrically connected between the gate electrode and the second electrically conductive device terminal.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 13, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Guang-Bo Gao, Zhaofeng Wang
  • Patent number: 6689677
    Abstract: A GaAs/Ge on Si CMOS integrated circuit is formed to improve transistor switching (propagation) delay by taking advantage of the high electron mobility for GaAs in the N-channel device and the high hole mobility for Ge in the P-channel device. A semi-insulating (undoped) layer of GaAs is formed over a silicon base to provide a buffer layer eliminating the possibility of latch-up. GaAs and Ge wells are then formed over the semi-insulating GaAs layer, electrically isolated by standard thermal oxide and/or flowable oxide (HSQ). N-channel MOS devices and P-channel MOS devices are formed in the GaAs and Ge wells, respectively, and interconnected to form the integrated circuit. Gate electrodes for devices in both wells may be polysilicon, while the gate oxide is preferably gallium oxide for the N-channel devices and silicon dioxide for the P-channel devices. Minimum device feature sizes may be 0.5 &mgr;m to avoid hot carrier degradation while still achieving performance increases over 0.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: February 10, 2004
    Assignee: STMicroelectronics, Inc.
    Inventors: Guang-Bo Gao, Hoang Huy Hoang
  • Patent number: 6563143
    Abstract: A GaAs/Ge on Si CMOS integrated circuit is formed to improve transistor switching (propagation) delay by taking advantage of the high electron mobility for GaAs in the N-channel device and the high hole mobility for Ge in the P-channel device. A semi-insulating (undoped) layer of GaAs is formed over a silicon base to provide a buffer layer eliminating the possibility of latch-up. GaAs and Ge wells are then formed over the semi-insulating GaAs layer, electrically isolated by standard thermal oxide and/or flowable oxide (HSQ). N-channel MOS devices and P-channel MOS devices are formed in the GaAs and Ge wells, respectively, and interconnected to form the integrated circuit. Gate electrodes for devices in both wells may be polysilicon, while the gate oxide is preferably gallium oxide for the N-channel devices and silicon dioxide for the P-channel devices. Minimum device feature sizes may be 0.5 &mgr;m to avoid hot carrier degradation while still achieving performance increases over 0.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: May 13, 2003
    Assignee: STMicroelectronics, Inc.
    Inventors: Guang-Bo Gao, Hoang Huy Hoang
  • Publication number: 20030068849
    Abstract: A GaAs/Ge on Si CMOS integrated circuit is formed to improve transistor switching (propagation) delay by taking advantage of the high electron mobility for GaAs in the N-channel device and the high hole mobility for Ge in the P-channel device. A semi-insulating (undoped) layer of GaAs is formed over a silicon base to provide a buffer layer eliminating the possibility of latch-up. GaAs and Ge wells are then formed over the semi-insulating GaAs layer, electrically isolated by standard thermal oxide and/or flowable oxide (HSQ). N-channel MOS devices and P-channel MOS devices are formed in the GaAs and Ge wells, respectively, and interconnected to form the integrated circuit. Gate electrodes for devices in both wells may be polysilicon, while the gate oxide is preferably gallium oxide for the N-channel devices and silicon dioxide for the P-channel devices. Minimum device feature sizes may be 0.5 &mgr;m to avoid hot carrier degradation while still achieving performance increases over 0.
    Type: Application
    Filed: November 1, 2002
    Publication date: April 10, 2003
    Inventors: Guang-Bo Gao, Hoang Huy Hoang
  • Patent number: 6531351
    Abstract: A GaAs/Ge on Si CMOS integrated circuit is formed to improve transistor switching (propagation) delay by taking advantage of the high electron mobility for GaAs in the N-channel device and the high hole mobility for Ge in the P-channel device. A semi-insulating (undoped) layer of GaAs is formed over a silicon base to provide a buffer layer eliminating the possibility of latch-up. GaAs and Ge wells are then formed over the semi-insulating GaAs layer, electrically isolated by standard thermal oxide and/or flowable oxide (HSQ). N-channel MOS devices and P-channel MOS devices are formed in the GaAs and Ge wells, respectively, and interconnected to form the integrated circuit. Gate electrodes for devices in both wells may be polysilicon, while the gate oxide is preferably gallium oxide for the N-channel devices and silicon dioxide for the P-channel devices. Minimum device feature sizes may be 0.5 &mgr;m to avoid hot carrier degradation while still achieving performance increases over 0.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: March 11, 2003
    Assignee: STMicroelectronics, Inc.
    Inventors: Guang-Bo Gao, Hoang Huy Hoang
  • Publication number: 20020125476
    Abstract: A GaAs/Ge on Si CMOS integrated circuit is formed to improve transistor switching (propagation) delay by taking advantage of the high electron mobility for GaAs in the N-channel device and the high hole mobility for Ge in the P-channel device. A semi-insulating (undoped) layer of GaAs is formed over a silicon base to provide a buffer layer eliminating the possibility of latch-up. GaAs and Ge wells are then formed over the semi-insulating GaAs layer, electrically isolated by standard thermal oxide and/or flowable oxide (HSQ). N-channel MOS devices and P-channel MOS devices are formed in the GaAs and Ge wells, respectively, and interconnected to form the integrated circuit. Gate electrodes for devices in both wells may be polysilicon, while the gate oxide is preferably gallium oxide for the N-channel devices and silicon dioxide for the P-channel devices. Minimum device feature sizes may be 0.5 &mgr;m to avoid hot carrier degradation while still achieving performance increases over 0.
    Type: Application
    Filed: October 3, 2001
    Publication date: September 12, 2002
    Inventors: Guang-Bo Gao, Hoang Huy Hoang
  • Publication number: 20020024094
    Abstract: A GaAs/Ge on Si CMOS integrated circuit is formed to improve transistor switching (propagation) delay by taking advantage of the high electron mobility for GaAs in the N-channel device and the high hole mobility for Ge in the P-channel device. A semi-insulating (undoped) layer of GaAs is formed over a silicon base to provide a buffer layer eliminating the possibility of latch-up. GaAs and Ge wells are then formed over the semi-insulating GaAs layer, electrically isolated by standard thermal oxide and/or flowable oxide (HSQ). N-channel MOS devices and P-channel MOS devices are formed in the GaAs and Ge wells, respectively, and interconnected to form the integrated circuit. Gate electrodes for devices in both wells may be polysilicon, while the gate oxide is preferably gallium oxide for the N-channel devices and silicon dioxide for the P-channel devices. Minimum device feature sizes may be 0.5 &mgr;m to avoid hot carrier degradation while still achieving performance increases over 0.
    Type: Application
    Filed: July 29, 1999
    Publication date: February 28, 2002
    Inventors: GUANG-BO GAO, HOANG HUY HOANG