Patents by Inventor GUANGCAI FU
GUANGCAI FU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12121873Abstract: The present disclosure provides a gas-solid separation structure including: a feeding pipeline including a first feeding part, a second feeding part and a first valve disposed between the first and second feeding parts; a discharge pipeline having a first opening and a second opening opposite to each other, the second feeding part extending into the discharge pipeline via the first opening; wherein an exhaust channel is formed between the second feeding part and the discharge pipeline, exhaust holes are formed in a portion of the discharge pipeline opposite to the second feeding part, and the exhaust channel is in communication with the exhaust holes. The present disclosure further provides a feeding device and an electrochemical deposition apparatus. The present disclosure can improve the problem of interference with medicine powder release caused by gases entering the discharge pipeline.Type: GrantFiled: August 23, 2021Date of Patent: October 22, 2024Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Shaodong Sun, Junwei Yan, Guangcai Yuan, Guocai Zhang, Shihao Dong, Lilei Zhang, Haoran Gao, Wenyue Fu, Chengfei Wang, Xiaojie Pan
-
Publication number: 20240162330Abstract: The present application discloses a method for manufacturing a metal zero layer, comprising: step 1, etching a zero interlayer film to form a first trench; step 2, performing first Ge ion implantation to form a first Ge layer in the zero interlayer film and achieve first amorphization; step 3, performing second Ge ion implantation to form a second Ge layer in the zero interlayer film and achieve second amorphization, wherein the depth of the second Ge layer is greater than the depth of the first Ge layer, and the second Ge ion implantation is tilt ion implantation; step 4, forming a metal silicide layer on the surface of an amorphous silicon layer in a self-aligned manner; step 5, filling the first trench with a first metal layer; and step 6, performing chemical mechanical polishing to fully remove the first metal layer outside the first trench and achieve planarization.Type: ApplicationFiled: June 27, 2023Publication date: May 16, 2024Applicant: Shanghai Huali Integrated Circuit CorporationInventors: Haibo LEI, Guangcai FU, Qi SHAO, Binbin ZHA
-
Patent number: 11510011Abstract: A microphone and its manufacturing method, relating the semiconductor techniques, are presented. The microphone comprises: a substrate comprising an opening, a first electrode layer at the bottom of the opening, and at least one groove adjacent to the first electrode layer, with the groove and the opening on two opposing sides of a bottom surface of the first electrode layer; a separation material layer filling the groove; and a second electrode layer on the separation material layer, wherein the first electrode layer, the separation material layer, and the second electrode layer form a cavity. In this inventive concept, the separation material layer on the groove works as an anchor node embedding in the substrate to increases the effective contact area and the bonding power, and to improve the bonding quality between the second electrode layer and the substrate, which results in a strengthened second electrode layer.Type: GrantFiled: October 1, 2020Date of Patent: November 22, 2022Inventor: GuangCai Fu
-
Publication number: 20210021938Abstract: A microphone and its manufacturing method, relating the semiconductor techniques, are presented. The microphone comprises: a substrate comprising an opening, a first electrode layer at the bottom of the opening, and at least one groove adjacent to the first electrode layer, with the groove and the opening on two opposing sides of a bottom surface of the first electrode layer; a separation material layer filling the groove; and a second electrode layer on the separation material layer, wherein the first electrode layer, the separation material layer, and the second electrode layer form a cavity. In this inventive concept, the separation material layer on the groove works as an anchor node embedding in the substrate to increases the effective contact area and the bonding power, and to improve the bonding quality between the second electrode layer and the substrate, which results in a strengthened second electrode layer.Type: ApplicationFiled: October 1, 2020Publication date: January 21, 2021Inventor: GuangCai FU
-
Patent number: 10834509Abstract: A microphone and its manufacturing method, relating the semiconductor techniques, are presented. The microphone comprises: a substrate comprising an opening, a first electrode layer at the bottom of the opening, and at least one groove adjacent to the first electrode layer, with the groove and the opening on two opposing sides of a bottom surface of the first electrode layer; a separation material layer filling the groove; and a second electrode layer on the separation material layer, wherein the first electrode layer, the separation material layer, and the second electrode layer form a cavity. In this inventive concept, the separation material layer on the groove works as an anchor node embedding in the substrate to increases the effective contact area and the bonding power, and to improve the bonding quality between the second electrode layer and the substrate, which results in a strengthened second electrode layer.Type: GrantFiled: March 19, 2018Date of Patent: November 10, 2020Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATIONInventor: GuangCai Fu
-
Patent number: 10633247Abstract: A semiconductor device and its manufacturing method, relating the semiconductor techniques. The semiconductor device manufacturing method comprises: providing a first semiconductor structure, wherein the first semiconductor structure comprises a first part comprising a plurality of films separated from each other, and a first bonding component on the first part; forming an anti-stick layer on the first part covering the plurality of films; providing a second semiconductor structure comprising a second part and a second bonding component on the second part; and bonding the first bonding component with the second bonding component, so that the first part is bonded to the second part. This inventive concept prevents the adhesion of neighboring films in a semiconductor device.Type: GrantFiled: June 5, 2019Date of Patent: April 28, 2020Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATIONInventor: GuangCai Fu
-
Patent number: 10629808Abstract: A method for forming a phase change random access memory is provided. The method includes providing a substrate having a surface; and forming a dielectric layer on the surface of the substrate. The method also includes forming a through-hole penetrating through the dielectric layer; and forming an adhesion layer on inner surface of the through-hole. Further, the method includes forming a metal layer doped with inorganic ions on the adhesion layer to reduce over-etching of the metal layer and increase heating efficiency of the metal layer on the surface of the adhesion layer; and forming a phase change layer on the dielectric layer, the adhesion layer and the doped metal layer.Type: GrantFiled: July 30, 2015Date of Patent: April 21, 2020Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Zhichao Li, Guangcai Fu
-
Publication number: 20190284044Abstract: A semiconductor device and its manufacturing method, relating the semiconductor techniques. The semiconductor device manufacturing method comprises: providing a first semiconductor structure, wherein the first semiconductor structure comprises a first part comprising a plurality of films separated from each other, and a first bonding component on the first part; forming an anti-stick layer on the first part covering the plurality of films; providing a second semiconductor structure comprising a second part and a second bonding component on the second part; and bonding the first bonding component with the second bonding component, so that the first part is bonded to the second part. This inventive concept prevents the adhesion of neighboring films in a semiconductor device.Type: ApplicationFiled: June 5, 2019Publication date: September 19, 2019Inventor: GuangCai FU
-
Patent number: 10351421Abstract: A semiconductor device and its manufacturing method, relating the semiconductor techniques. The semiconductor device manufacturing method comprises: providing a first semiconductor structure, wherein the first semiconductor structure comprises a first part comprising a plurality of films separated from each other, and a first bonding component on the first part; forming an anti-stick layer on the first part covering the plurality of films; providing a second semiconductor structure comprising a second part and a second bonding component on the second part; and bonding the first bonding component with the second bonding component, so that the first part is bonded to the second part. This inventive concept prevents the adhesion of neighboring films in a semiconductor device.Type: GrantFiled: March 16, 2018Date of Patent: July 16, 2019Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATIONInventor: GuangCai Fu
-
Publication number: 20180279058Abstract: A microphone and its manufacturing method, relating the semiconductor techniques, are presented. The microphone comprises: a substrate comprising an opening, a first electrode layer at the bottom of the opening, and at least one groove adjacent to the first electrode layer, with the groove and the opening on two opposing sides of a bottom surface of the first electrode layer; a separation material layer filling the groove; and a second electrode layer on the separation material layer, wherein the first electrode layer, the separation material layer, and the second electrode layer form a cavity. In this inventive concept, the separation material layer on the groove works as an anchor node embedding in the substrate to increases the effective contact area and the bonding power, and to improve the bonding quality between the second electrode layer and the substrate, which results in a strengthened second electrode layer.Type: ApplicationFiled: March 19, 2018Publication date: September 27, 2018Inventor: GuangCai Fu
-
Publication number: 20180265352Abstract: A semiconductor device and its manufacturing method, relating the semiconductor techniques. The semiconductor device manufacturing method comprises: providing a first semiconductor structure, wherein the first semiconductor structure comprises a first part comprising a plurality of films separated from each other, and a first bonding component on the first part; forming an anti-stick layer on the first part covering the plurality of films; providing a second semiconductor structure comprising a second part and a second bonding component on the second part; and bonding the first bonding component with the second bonding component, so that the first part is bonded to the second part. This inventive concept prevents the adhesion of neighboring films in a semiconductor device.Type: ApplicationFiled: March 16, 2018Publication date: September 20, 2018Inventor: GuangCai FU
-
Patent number: 9875965Abstract: Semiconductor devices and fabrication methods are provided. In a semiconductor device, a semiconductor substrate includes a first electrode layer having a top surface coplanar with a top surface of the semiconductor substrate. A sacrificial layer is formed on the semiconductor substrate and the first electrode layer. A first mask layer made of a conductive material is formed on the sacrificial layer. The first mask layer and the sacrificial layer are etched until a surface of the first electrode layer is exposed to form openings through the first mask layer and the sacrificial layer. A cleaning process is performed to remove etch byproducts adhered to a surface of the first mask layer and adhered to sidewalls and bottom surfaces of the openings. Conductive plugs are formed in the openings after the cleaning process.Type: GrantFiled: July 14, 2016Date of Patent: January 23, 2018Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATIONInventors: Guangcai Fu, Tianlun Yang, Xiaoping Zhang
-
Patent number: 9751750Abstract: A semiconductor device having a capacitive pressure sensor structure includes a substrate, an interlayer dielectric layer on the substrate, a bottom electrode of a pressure sensor within the interlayer dielectric layer, a pressure sensing cavity above the bottom electrode, a sensing film above the pressure sensing cavity and covering a portion of the interlayer dielectric layer, a cover layer on the interlayer dielectric layer and on the sensing film, the cover layer having an opening exposing a portion of the sensing film, and a high thermal expansion coefficient material layer disposed on cover layer and sidewalls of the opening. Through the use of the high thermal expansion coefficient material layer, the capacitive pressure sensor structure is not susceptible to changes in ambient temperature to enhance the sensitivity of the capacitive pressure sensor structure.Type: GrantFiled: May 13, 2015Date of Patent: September 5, 2017Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Xianming Zhang, Guangcai Fu
-
Patent number: 9573805Abstract: A method of manufacturing a pressure sensor is provided. The method includes: providing a substrate, wherein a bottom electrode and a pressure sensing film are disposed on the substrate; forming an etch stop assembly on the pressure sensing film at a location corresponding to a pressure trench; forming a cover layer on the substrate covering the etch stop assembly and the pressure sensing film; forming a mask layer on the cover layer, wherein an opening of the mask layer is formed above the etch stop assembly and exposes a portion of the cover layer at the location corresponding to the pressure trench; etching the cover layer using the mask layer so as to form the pressure trench in the cover layer; removing the etch stop assembly at a bottom of the pressure trench; and removing the mask layer.Type: GrantFiled: May 15, 2015Date of Patent: February 21, 2017Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Guangcai Fu, Haiyong Ni
-
Publication number: 20160322303Abstract: Semiconductor devices and fabrication methods are provided. In a semiconductor device, a semiconductor substrate includes a first electrode layer having a top surface coplanar with a top surface of the semiconductor substrate. A sacrificial layer is formed on the semiconductor substrate and the first electrode layer. A first mask layer made of a conductive material is formed on the sacrificial layer. The first mask layer and the sacrificial layer are etched until a surface of the first electrode layer is exposed to form openings through the first mask layer and the sacrificial layer. A cleaning process is performed to remove etch byproducts adhered to a surface of the first mask layer and adhered to sidewalls and bottom surfaces of the openings. Conductive plugs are formed in the openings after the cleaning process.Type: ApplicationFiled: July 14, 2016Publication date: November 3, 2016Inventors: GUANGCAI FU, TIANLUN YANG, XIAOPING ZHANG
-
Patent number: 9416004Abstract: Semiconductor devices and fabrication methods are provided. In a semiconductor device, a semiconductor substrate includes a first electrode layer having a top surface coplanar with a top surface of the semiconductor substrate. A sacrificial layer is formed on the semiconductor substrate and the first electrode layer. A first mask layer made of a conductive material is formed on the sacrificial layer. The first mask layer and the sacrificial layer are etched until a surface of the first electrode layer is exposed to form openings through the first mask layer and the sacrificial layer. A cleaning process is performed to remove etch byproducts adhered to a surface of the first mask layer and adhered to sidewalls and bottom surfaces of the openings. Conductive plugs are formed in the openings after the cleaning process.Type: GrantFiled: January 13, 2015Date of Patent: August 16, 2016Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATIONInventors: Guangcai Fu, Tianlun Yang, Xiaoping Zhang
-
Publication number: 20160064657Abstract: A method for forming a phase change random access memory is provided. The method includes providing a substrate having a surface; and forming a dielectric layer on the surface of the substrate. The method also includes forming a through-hole penetrating through the dielectric layer; and forming an adhesion layer on inner surface of the through-hole. Further, the method includes forming a metal layer doped with inorganic ions on the adhesion layer to reduce over-etching of the metal layer and increase heating efficiency of the metal layer on the surface of the adhesion layer; and forming a phase change layer on the dielectric layer, the adhesion layer and the doped metal layer.Type: ApplicationFiled: July 30, 2015Publication date: March 3, 2016Inventors: ZHICHAO LI, GUANGCAI FU
-
Publication number: 20160009546Abstract: A semiconductor device having a capacitive pressure sensor structure includes a substrate, an interlayer dielectric layer on the substrate, a bottom electrode of a pressure sensor within the interlayer dielectric layer, a pressure sensing cavity above the bottom electrode, a sensing film above the pressure sensing cavity and covering a portion of the interlayer dielectric layer, a cover layer on the interlayer dielectric layer and on the sensing film, the cover layer having an opening exposing a portion of the sensing film, and a high thermal expansion coefficient material layer disposed on cover layer and sidewalls of the opening. Through the use of the high thermal expansion coefficient material layer, the capacitive pressure sensor structure is not susceptible to changes in ambient temperature to enhance the sensitivity of the capacitive pressure sensor structure.Type: ApplicationFiled: May 13, 2015Publication date: January 14, 2016Inventors: XIANMING ZHANG, GUANGCAI FU
-
Publication number: 20150368096Abstract: A method of manufacturing a pressure sensor is provided. The method includes: providing a substrate, wherein a bottom electrode and a pressure sensing film are disposed on the substrate; forming an etch stop assembly on the pressure sensing film at a location corresponding to a pressure trench; forming a cover layer on the substrate covering the etch stop assembly and the pressure sensing film; forming a mask layer on the cover layer, wherein an opening of the mask layer is formed above the etch stop assembly and exposes a portion of the cover layer at the location corresponding to the pressure trench; etching the cover layer using the mask layer so as to form the pressure trench in the cover layer; removing the etch stop assembly at a bottom of the pressure trench; and removing the mask layer.Type: ApplicationFiled: May 15, 2015Publication date: December 24, 2015Inventors: Guangcai FU, Haiyong NI
-
Publication number: 20150203351Abstract: Semiconductor devices and fabrication methods are provided. In a semiconductor device, a semiconductor substrate includes a first electrode layer having a top surface coplanar with a top surface of the semiconductor substrate. A sacrificial layer is formed on the semiconductor substrate and the first electrode layer. A first mask layer made of a conductive material is formed on the sacrificial layer. The first mask layer and the sacrificial layer are etched until a surface of the first electrode layer is exposed to form openings through the first mask layer and the sacrificial layer. A cleaning process is performed to remove etch byproducts adhered to a surface of the first mask layer and adhered to sidewalls and bottom surfaces of the openings. Conductive plugs are formed in the openings after the cleaning process.Type: ApplicationFiled: January 13, 2015Publication date: July 23, 2015Inventors: GUANGCAI FU, TIANLUN YANG, XIAOPING ZHANG