Patents by Inventor Guangqiang Jiang

Guangqiang Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190321645
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Guangqiang JIANG, John WOOCK, Dennis SCHROEDER, Eric SCHMID
  • Patent number: 10406369
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: September 10, 2019
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10384067
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: August 20, 2019
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Publication number: 20190201679
    Abstract: The various implementations described herein include a percutaneous port for promoting tissue in-growth around the percutaneous port. In one aspect, the percutaneous port includes a tubular structure having an outer surface, and a coil having an outer surface and comprised of a plurality of loops. Furthermore, at least a portion of the outer surface of the coil is joined to the outer surface of the tubular structure.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Guangqiang Jiang, Tom He
  • Patent number: 10226612
    Abstract: The various implementations described herein include a percutaneous port for promoting tissue in-growth around the percutaneous port. In one aspect, the percutaneous port includes a tubular structure having an outer surface, and a coil having an outer surface and comprised of a plurality of loops. Furthermore, at least a portion of the outer surface of the coil is joined to the outer surface of the tubular structure.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: March 12, 2019
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Guangqiang Jiang, Tom He
  • Publication number: 20190009098
    Abstract: An integrated electromyography (EMG) and signal/stimulation generation clinician programmer may be coupled with an implantable temporary or permanent lead in a patient and at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. Generally, the integrated clinician programmer may comprise a portable housing, a signal/stimulation generator, and EMG signal processor, and a graphical user interface. The housing has an external surface and encloses circuitry at least partially disposed within the housing. The signal/stimulation generator may be disposed within the housing and configured to deliver test stimulation to a nerve tissue of the patient via the implantable lead. The EMG signal processor may be disposed within the housing and configured to record a stimulation-induced EMG motor response for each test stimulation via the at least one EMG sensing electrode.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 10, 2019
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10105542
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: October 23, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10092762
    Abstract: An integrated electromyography (EMG) and signal/stimulation generation clinician programmer may be coupled with an implantable temporary or permanent lead in a patient and at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. Generally, the integrated clinician programmer may comprise a portable housing, a signal/stimulation generator, and EMG signal processor, and a graphical user interface. The signal/stimulation generator may be disposed within the housing and configured to deliver test stimulation to a nerve tissue of the patient via the implantable lead. The EMG signal processor may be disposed within the housing and configured to record a stimulation-induced EMG motor response for each test stimulation via the at least one EMG sensing electrode. The graphical user interface at least partially comprises the external surface of the housing and has a touch screen display for direct user interaction or a keyboard, mouse, or the like.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: October 9, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10086184
    Abstract: The various implementations described herein include methods used to manufacture a percutaneous port for promoting tissue in-growth around the percutaneous port. In one aspect, the method includes providing a tubular structure having an outer surface and providing a coil having an outer surface and comprised of a plurality of loops. The method further includes joining at least a portion of the outer surface of the coil to the outer surface of the tubular structure.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: October 2, 2018
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Guangqiang Jiang, Tom He
  • Publication number: 20180243572
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Application
    Filed: May 2, 2018
    Publication date: August 30, 2018
    Inventors: Guangqiang JIANG, John WOOCK, Dennis SCHROEDER, Eric SCHMID
  • Publication number: 20180133491
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 17, 2018
    Inventors: Guangqiang JIANG, John WOOCK, Dennis SCHROEDER, Eric SCHMID
  • Patent number: 9895546
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: February 20, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 9855423
    Abstract: Methods and systems for obtaining and analyzing electromyography responses of electrodes of an implanted neurostimulation lead for use neurostimulation programming are provided herein. System setups for neural localization and/or programming include a clinician programmer coupleable with a temporary or permanent lead implantable in a patient and at least one pair of EMG sensing electrodes minimally invasively positioned on a skin surface or within the patient. The clinician programmer is configured to determine a plurality of recommended electrode configurations based on thresholds and EMG responses of the plurality of electrodes and rank the electrode configuration according to pre-determined criteria.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: January 2, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Publication number: 20170209703
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Application
    Filed: January 3, 2017
    Publication date: July 27, 2017
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 9713429
    Abstract: A pressure sensor module configured for implant at a desired site at which a pressure is to be measured. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. The pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system. An exemplary use is in a three pressure sensor system including a flow control valve in a shunt to treat hydrocephalus. An embodiment of the invention includes a pressure sensor and associated electromagnetic coils embedded in the tip portion of the shunt for measuring the pressure of fluid externally of the shunt at the tip portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 25, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Publication number: 20170189679
    Abstract: Methods and systems for obtaining and analyzing electromyography responses of electrodes of an implanted neurostimulation lead for use neurostimulation programming are provided herein. System setups for neural localization and/or programming include a clinician programmer coupleable with a temporary or permanent lead implantable in a patient and at least one pair of EMG sensing electrodes minimally invasively positioned on a skin surface or within the patient. The clinician programmer is configured to determine a plurality of recommended electrode configurations based on thresholds and EMG responses of the plurality of electrodes and rank the electrode configuration according to pre-determined criteria.
    Type: Application
    Filed: December 9, 2016
    Publication date: July 6, 2017
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 9622677
    Abstract: A brain implant device includes a housing containing communication and control electronics coupled to a conduit configured for monitoring signals from a brain's motor cortex and providing stimulation signals to the brain's sensory cortex. The brain implant device is capable of wireless communication with an external communication and control signal source by means of an antenna provided in the housing. The conduit is flexible and may contain upwards of 128 electrical conductors providing electrical connections between the device electronics and related sites on the motor and/or sensory cortex by means of a plurality of electrically conductive protuberances extending from the conduit and adapted for contact with such sites.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 18, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Howard H. Stover, John C. Gord, Charles L. Byers, Joseph H. Schulman, Guangqiang Jiang, Ross Davis
  • Patent number: 9561372
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: February 7, 2017
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 9555246
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: January 31, 2017
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Publication number: 20160199657
    Abstract: Devices, systems and methods for transcutaneous charging of implanted medical devices are provided herein. Such devices include a portable charging device and an attachment device for affixing the portable charging device to a skin of the patient in a suitable location and alignment over the implanted medical device to facilitate charging. The attachment device can include a frame having an opening through which the charging device is mounted and one or more tabs extending laterally from the opening, each tab including an adhesive surface and being movable from a first position extending away from a skin of the patient to facilitate positioning of the charging device and a second position extending toward the skin of the patient so as to engage the skin of the patient and affix the charging device to the patient after being properly positioned.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventors: Guangqiang Jiang, Dennis Schroeder, Raymond W. Cohen