Patents by Inventor Guannan Guo

Guannan Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240363269
    Abstract: In general, the disclosure is directed to bulk iron-nitride materials having a polycrystalline microstructure having pores including a plurality of crystallographic grains surrounded by grain boundaries, where at least one crystallographic grain includes an iron-nitride phase including any of a body centered cubic (bcc) structure, a body centered tetragonal (bct), and a martensite structure. The disclosure further describes techniques producing a bulk iron-nitride material having a polycrystalline microstructure, including: melting an iron source to obtain a molten iron source; fast belt casting the molten iron source to obtain a cast iron source; cooling and shaping the cast iron source to obtain a bulk iron-containing material having a body-centered cubic (bcc) structure; annealing the bulk iron-containing material at an austenite transformation temperature and subsequently cooling the bulk iron-containing material; and nitriding the bulk iron-containing material to obtain the bulk iron-nitride material.
    Type: Application
    Filed: May 15, 2024
    Publication date: October 31, 2024
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping WANG, Jinming LIU, Bin MA, Fan ZHANG, Guannan GUO, Yiming WU, Xiaowei ZHANG
  • Patent number: 12018386
    Abstract: The disclosure describes a method that includes forming a soft magnetic material by a technique including melt spinning. The soft magnetic material includes at least one of: at least one of an ??-Fe16(NxZ1-x)2 phase domain or an ??-Fe8(NxZ1-x), where Z includes at least one of C, B, or O, and where x is a number greater than zero and less than one; or at least one of an ??-Fe16N2 phase domain or an ??-Fe8N phase domain, and at least one of an ??-Fe16Z2 phase domain or an ??-Fe8Z phase domain.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: June 25, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Bin Ma, Guannan Guo
  • Patent number: 12014853
    Abstract: In general, the disclosure is directed to bulk iron-nitride materials having a polycrystalline microstructure having pores including a plurality of crystallographic grains surrounded by grain boundaries, where at least one crystallographic grain includes an iron-nitride phase including any of a body centered cubic (bcc) structure, a body centered tetragonal (bct), and a martensite structure. The disclosure further describes techniques producing a bulk iron-nitride material having a polycrystalline microstructure, including: melting an iron source to obtain a molten iron source; fast belt casting the molten iron source to obtain a cast iron source; cooling and shaping the cast iron source to obtain a bulk iron-containing material having a body-centered cubic (bcc) structure; annealing the bulk iron-containing material at an austenite transformation temperature and subsequently cooling the bulk iron-containing material; and nitriding the bulk iron-containing material to obtain the bulk iron-nitride material.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: June 18, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Jinming Liu, Bin Ma, Fan Zhang, Guannan Guo, Yiming Wu, Xiaowei Zhang
  • Publication number: 20210202142
    Abstract: In general, the disclosure is directed to bulk iron-nitride materials having a polycrystalline microstructure having pores including a plurality of crystallographic grains surrounded by grain boundaries, where at least one crystallographic grain includes an iron-nitride phase including any of a body centered cubic (bcc) structure, a body centered tetragonal (bct), and a martensite structure. The disclosure further describes techniques producing a bulk iron-nitride material having a polycrystalline microstructure, including: melting an iron source to obtain a molten iron source; fast belt casting the molten iron source to obtain a cast iron source; cooling and shaping the cast iron source to obtain a bulk iron-containing material having a body-centered cubic (bcc) structure; annealing the bulk iron-containing material at an austenite transformation temperature and subsequently cooling the bulk iron-containing material; and nitriding the bulk iron-containing material to obtain the bulk iron-nitride material.
    Type: Application
    Filed: May 28, 2019
    Publication date: July 1, 2021
    Inventors: Jian-Ping WANG, Jinming LIU, Bin MA, Fan ZHANG, Guannan GUO, Yiming WU, Xiaowei ZHANG
  • Publication number: 20210123126
    Abstract: The disclosure describes a method that includes forming a soft magnetic material by a technique including melt spinning. The soft magnetic material includes at least one of: at least one of an ??-Fe16(NxZ1-x)2 phase domain or an ??-Fe8(NxZ1-x), where Z includes at least one of C, B, or O, and where x is a number greater than zero and less than one; or at least one of an ??-Fe16N2 phase domain or an ??-Fe8N phase domain, and at least one of an ??-Fe16Z2 phase domain or an ??-Fe8Z phase domain.
    Type: Application
    Filed: October 9, 2020
    Publication date: April 29, 2021
    Inventors: Jian-Ping Wang, Bin Ma, Guannan Guo