Patents by Inventor Guchan Ozbilgin

Guchan Ozbilgin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200184236
    Abstract: Among other things, we describe systems and method for validating sensor calibration. For validating calibration of a system of sensors having several types of sensors, an object may be configured to have a substantially reflective portion such that the sensors can isolate the substantially reflective portion, and their sensor data can be compared to determine, if the detected locations of the substantially reflective portion by each sensor are aligned. For calibrating a system of sensors, an object having known calibration features can be used and detected by each sensor, and the detected data can be compared to known calibration data associated with the object to determine if each sensor is correctly calibrated.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 11, 2020
    Inventors: Mauro Aguiar, Noam Weinstein, Eric Wolff, Matthias Sapuan, Hsun-Hsien Chang, Philipp Robbel, Maurilio Di Cicco, Guchan Ozbilgin, Bishwamoy Roy, Yifan Yang, Akshay Bhagat, David Butterworth, Andrew J. Eick, Alok Sharma, Junqing Wei
  • Publication number: 20190294176
    Abstract: A sensor data fusion system for a vehicle with multiple sensors includes a first-sensor, a second-sensor, and a controller-circuit. The first-sensor is configured to output a first-frame of data and a subsequent-frame of data indicative of objects present in a first-field-of-view. The first-frame is characterized by a first-time-stamp, the subsequent-frame of data characterized by a subsequent-time-stamp different from the first-time-stamp. The second-sensor is configured to output a second-frame of data indicative of objects present in a second-field-of-view that overlaps the first-field-of-view. The second-frame is characterized by a second-time-stamp temporally located between the first-time-stamp and the subsequent-time-stamp. The controller-circuit is configured to synthesize an interpolated-frame from the first-frame and the subsequent-frame. The interpolated-frame is characterized by an interpolated-time-stamp that corresponds to the second-time-stamp.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Publication number: 20190281260
    Abstract: A vehicle perception sensor adjustment system includes a perception-sensor, a digital-map, and controller-circuit. The perception-sensor is configured to detect an object proximate to a host-vehicle. The perception-sensor is characterized as having a field-of-view that is adjustable. The digital-map indicates a contour of a roadway traveled by the host-vehicle. The controller-circuit in communication with the perception-sensor and the digital-map. The controller-circuit determines the field-of-view of the perception-sensor in accordance with the contour of the roadway indicated by the digital-map, and outputs a control-signal to the perception-sensor that adjusts the field-of-view of the perception-sensor.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 12, 2019
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Publication number: 20190025433
    Abstract: A tracking system for at least partial automated operation of a host vehicle is configured to detect and monitor a moving object that may be at least momentarily, and at least partially, obstructed by an obstruction. The tracking system includes an object device and a controller. The object device is configured to detect the object with respect to the obstruction by monitoring for object and the obstruction at a prescribed frequency, and output a plurality of object signals at the prescribed frequency. The controller is configured to receive and process the plurality of object signals to recognize the object, determine a reference point of the object, and utilize the reference point to determine a true speed of the object as the object is increasingly or decreasingly obstructed by the obstruction.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 24, 2019
    Inventors: Yifan Yang, Yimu Wang, Guchan Ozbilgin, Wenda Xu
  • Publication number: 20180290638
    Abstract: An open-loop brake control system for an automated vehicle includes a brake-unit and a controller. The brake-unit varies brake-pressure to operate brakes of a host-vehicle. The controller is in communication with the brake-unit. The controller operates the brake-unit to an initial-pressure to initiate braking of the host-vehicle in accordance with a brake-model that characterizes vehicle-deceleration versus the initial-pressure based on a time-of-operation of the brakes.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 11, 2018
    Inventors: Gaurav Bhatia, Junqing Wei, Ludong Sun, Guchan Ozbilgin
  • Patent number: 10094933
    Abstract: A navigation system for use on an automated vehicle includes a global-positioning-system-receiver (GPS-receiver), a vehicle-to-vehicle-transceiver (V2V-transceiver), an object-detector, and a controller. The GPS-receiver indicates a receiver-coordinate of a host-vehicle. The receiver-coordinate is characterized by a receiver-error. The V2V-transceiver receives a GPS-coordinate from each of a plurality of other-vehicles proximate to the host-vehicle. The object-detector determines a distance and a direction relative to the host-vehicle to each of the plurality of other-vehicles. The controller is in communication with the GPS-receiver, the V2V-transceiver, and the object-detector.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: October 9, 2018
    Assignee: Delphi Technologies, Inc.
    Inventor: Guchan Ozbilgin
  • Publication number: 20180275282
    Abstract: A navigation system for use on an automated vehicle includes a global-positioning-system-receiver (GPS-receiver), a vehicle-to-vehicle-transceiver (V2V-transceiver), an object-detector, and a controller. The GPS-receiver indicates a receiver-coordinate of a host-vehicle. The receiver-coordinate is characterized by a receiver-error. The V2V-transceiver receives a GPS-coordinate from each of a plurality of other-vehicles proximate to the host-vehicle. The object-detector determines a distance and a direction relative to the host-vehicle to each of the plurality of other-vehicles. The controller is in communication with the GPS-receiver, the V2V-transceiver, and the object-detector.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 27, 2018
    Inventor: Guchan Ozbilgin