Patents by Inventor Guenter Rudolph

Guenter Rudolph has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9084564
    Abstract: A system for determining the surface shape of the cornea of an eye by analyzing the reflection of a spatially distributed ring pattern. The system includes an element for generating a ring pattern, an illuminating unit, an image capturing unit, and a control and analyzing unit. The element for generating rings is a fresneled axicon with annular structures of different radii. Furthermore, an optical element for illuminating the entire surface of the fresneled axicon with plane waves and an optical element for separating the illuminating and detecting beam path are arranged between the illuminating unit and the fresneled axicon. Furthermore, the image capturing unit consisting of an imaging system and an image sensor is designed for a telecentric distance-independent image detection.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 21, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Daniel Bublitz, Günter Rudolph, Martin Hacker, Tobias Bühren, Roland Bergner, Burkhard Wagner, Rico Fuchs
  • Patent number: 9030383
    Abstract: A display device has a holding device wearable on a user's head and holding a multifunctional glass that comprises a first and second coupling-out section and a coupling-in section, an image generation module that generates and couples an image into the multifunctional glass through the coupling-in section to the first coupling-out section redirecting the image in the direction of the user such that the user can perceive the image in superimposition with the real environment, a control unit for the image generation module, and a detector which is connected to the control unit and which measures the intensity of ambient light coupled through the first coupling-out section to the second coupling-out section and coupled out of the multifunctional glass through the second coupling-out section. The control unit controls the brightness of the image of the image generation module, the brightness controlled according to the intensity measured by the detector.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 12, 2015
    Assignee: Carl Zeiss AG
    Inventors: Karsten Lindig, Hans-Juergen Dobschal, Guenter Rudolph
  • Patent number: 8970961
    Abstract: A multifunction optical element including an image generating module that generates an image, and couples the image into a multifunction glass that has a coupling in area and a coupling out area. The image produced is coupled into the multifunction glass via the coupling in area, guided in the multifunction glass to the coupling in area, and coupled out via the coupling out area, in such a way that the user can perceive the coupled out image superimposed on the surroundings when the holding device is placed on the head of the user. The coupling out area has a Fresnel structure which receives light from the coupling-in-area via a folded beam path and couples the image out of the multifunction optical element. The coupling out element has an imaging property.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss AG
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Karsten Lindig
  • Publication number: 20150036223
    Abstract: A multifunction optical element including an image generating module that generates an image, and couples the image into a multifunction glass that has a coupling in area and a coupling out area. The image produced is coupled into the multifunction glass via the coupling in area, guided in the multifunction glass to the coupling in area, and coupled out via the coupling out area, in such a way that the user can perceive the coupled out image superimposed on the surroundings when the holding device is placed on the head of the user. The coupling out area has a Fresnel structure which receives light from the coupling-in-area via a folded beam path and couples the image out of the multifunction optical element. The coupling out element has an imaging property.
    Type: Application
    Filed: April 14, 2014
    Publication date: February 5, 2015
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Karsten Lindig
  • Patent number: 8922624
    Abstract: An optical observation instrument has two optical transmission channels for transmitting two partial ray bundles (9A, 9B). The optical observation instrument has a main objective (1) common to the optical transmission channels, an electronic image sensor (7) for sequentially recording the partial ray bundles (9A, 9B), an intermediate imaging optical system (3) between the main objective (1) and the image sensor (7) and common to the optical transmission channels, and a tilting mirror matrix (5) between the main objective (1) and the image sensor (7). The intermediate imaging optical system (3) is arranged so that the respective partial ray bundle (9A, 9B) is deflected toward the image sensor (7) and passes the intermediate imaging optical system (3) both on the way from the main objective (1) to the tilting mirror matrix (5) and on the way from the tilting mirror matrix (5) to the image sensor (7).
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: December 30, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Pretorius, Enrico Geissler, Guenter Rudolph, Christoph Nieten, Bryce Anton Moffat, Artur Hoegele
  • Publication number: 20140185024
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a wavefront correction device comprising a refractive optical element that has two opposite optical surfaces, through which projection light passes, and a circumferential rim surface extending between the two optical surfaces. A first and a second optical system are configured to direct first and second heating light to different portions of the rim surface such that at least a portion of the first and second heating light enters the refractive optical element. A temperature distribution caused by a partial absorption of the heating light results in a refractive index distribution inside the refractive optical element that corrects a wavefront error. At least the first optical system comprises a focusing optical element that focuses the first heating light in a focal area such that the first heating light emerging from the focal area impinges on the rim surface.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Inventors: Johannes Zellner, Boris Bittner, Norbert Wabra, Martin von Hodenberg, Sonja Schneider, Ricarda Schneider, Arne Schob, Guenter Rudolph, Alexander Gratzke, Bryce Anton Moffat
  • Patent number: 8736962
    Abstract: A display device including a holding device that can be placed on the head of a user, an image generating module fixed to the holding device and generating an image, and a multifunction glass that is fixed to the holding device and has a coupling in area and a coupling out area. The image produced is coupled into the multifunction glass via the coupling in area, guided in the multifunction glass to the coupling in area, and coupled out via the coupling out area, in such a way that the user can perceive the coupled out image superimposed on the surroundings when the holding device is placed on the head of the user. The coupling out area has a Fresnel structure which receives light from the coupling-in-area via a folded beam path and couples the image out of the multifunction optical element. The coupling out element has an imaging property.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Carl Zeiss AG
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Karsten Lindig
  • Patent number: 8696143
    Abstract: A projection system having a first tilting mirror matrix, a second tilting mirror matrix, and an imaging lens, which projects the first tilting mirror matrix onto the second tilting mirror matrix, wherein each tilting mirror matrix has multiple tilting mirrors, the tilting axes of which are positioned in a modulator surface plane. The imaging lens includes a first lens and an imaging mirror, and the imaging mirror forms an aperture stop of the imaging lens, wherein the aperture diaphragm includes an angle of other than 90° with the normal of the modulator surface of the first tilting mirror matrix without taking into account any optical path folds.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: April 15, 2014
    Assignee: Carl Zeiss AG
    Inventors: Enrico Geissler, Christoph Nieten, Guenter Rudolph, Marco Pretorius
  • Publication number: 20140085615
    Abstract: A projection device includes a first and a second tilting mirror matrix, each including a plurality of tilting mirrors. A cover glass covers the tilting mirrors. An imaging lens system includes a relay lens system which images the tilting mirrors of the first tilting mirror matrix onto the tilting mirrors of the second tilting mirror matrix. Thus light reflected by the tilting mirrors of the first tilting mirror matrix onto tilting mirrors of the second tilting mirror matrix, and a projection lens system, which projects light reflected by tilting mirrors of the second tilting mirror matrix, in order to produce an image, is provided. The imaging lens system further includes a correction element which corrects at least one image error caused by the light obliquely passing through the cover glasses.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: Carl Zeiss AG
    Inventors: Marco Pretorius, Guenter Rudolph, Enrico Geissler, Christoph Nieten
  • Publication number: 20140078468
    Abstract: A system for determining the surface shape of the cornea of an eye by analyzing the reflection of a spatially distributed ring pattern. The system includes an element for generating a ring pattern, an illuminating unit, an image capturing unit, and a control and analyzing unit. The element for generating rings is a fresneled axicon with annular structures of different radii. Furthermore, an optical element for illuminating the entire surface of the fresneled axicon with plane waves and an optical element for separating the illuminating and detecting beam path are arranged between the illuminating unit and the fresneled axicon. Furthermore, the image capturing unit consisting of an imaging system and an image sensor is designed for a telecentric distance-independent image detection.
    Type: Application
    Filed: May 22, 2012
    Publication date: March 20, 2014
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Daniel Bublitz, Günter Rudolph, Martin Hacker, Tobias Bühren, Roland Bergner, Burkhard Wagner, Rico Fuchs
  • Patent number: 8570502
    Abstract: There is provided a scanning mirror device with a microsystem scanning mirror which is mounted rotatably about at least one axis, and a detection module which has a light source which emits a light beam, and a position detector, wherein the detection module directs the light beam onto the scanning mirror from behind, with the result that the light beam is reflected, at the back of the scanning mirror, to the position detector which measures the position of the reflected light beam, from which the rotation angle of the scanning mirror about the at least one axis can be deduced.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: October 29, 2013
    Assignee: Carl Zeiss AG
    Inventors: Stefan Richter, Veljko Milanovic, Günter Rudolph, Michel Stutz, Gerhard Krampert
  • Publication number: 20130250429
    Abstract: A display device including a holding device that can be placed on the head of a user, an image generating module fixed to the holding device and generating an image, and a multifunction glass that is fixed to the holding device and has a coupling in area and a coupling out area. The image produced is coupled into the multifunction glass via the coupling in area, guided in the multifunction glass to the coupling in area, and coupled out via the coupling out area, in such a way that the user can perceive the coupled out image superimposed on the surroundings when the holding device is placed on the head of the user. The coupling out area has a Fresnel structure which receives light from the coupling-in-area via a folded beam path and couples the image out of the multifunction optical element. The coupling out element has an imaging property.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 26, 2013
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Karsten Lindig
  • Publication number: 20130242274
    Abstract: A projection system having a first tilting mirror matrix, a second tilting mirror matrix, and an imaging lens, which projects the first tilting mirror matrix onto the second tilting mirror matrix, wherein each tilting mirror matrix has multiple tilting mirrors, the tilting axes of which are positioned in a modulator surface plane. The imaging lens includes a first lens and an imaging mirror, and the imaging mirror forms an aperture stop of the imaging lens, wherein the aperture diaphragm includes an angle of other than 90° with the normal of the modulator surface of the first tilting mirror matrix without taking into account any optical path folds.
    Type: Application
    Filed: April 16, 2013
    Publication date: September 19, 2013
    Inventors: Enrico Geissler, Christoph Nieten, Guenter Rudolph, Marco Pretorius
  • Publication number: 20130215516
    Abstract: A display device includes a holding device that can be placed on the head of a user. An image-generating module and an imaging lens system can be secured on the holding device. The latter includes a spectacle lens with a curved front and a curved back. It projects the image generated when the holding device is placed on the head such that the user can perceive it superimposed on the surroundings. Light from the image-generating module is coupled into an optical channel in the spectacle lens. It is conducted in the optical channel to an exit section and coupled via the exit section out of the spectacle lens. The optical channel includes in the region of the front and back a Fresnel structure with a plurality of facets on which the light conducted in the optical channel is reflected, and which are aligned parallel to one another.
    Type: Application
    Filed: July 21, 2011
    Publication date: August 22, 2013
    Inventors: Hans-Jürgen Dobschal, Karsten Lindig, Guenter Rudolph
  • Patent number: 8500290
    Abstract: A projection system having a first tilting mirror matrix, a second tilting mirror matrix, and an imaging lens, which projects the first tilting mirror matrix onto the second tilting mirror matrix, wherein each tilting mirror matrix has multiple tilting mirrors, the tilting axes of which are positioned in a modulator surface plane. The imaging lens includes a first lens and an imaging mirror, and the imaging mirror forms an aperture stop of the imaging lens, wherein the aperture diaphragm includes an uneven angle of 90° together with the normal of the modulator surface of the first tilting mirror matrix without taking into account any optical path folds.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: August 6, 2013
    Assignee: Carl Zeiss AG
    Inventors: Enrico Geissler, Christoph Nieten, Guenter Rudolph, Marco Pretorius
  • Patent number: 8467132
    Abstract: A display device including a holding device that can be placed on the head of a user, an image generating module fixed to the holding device and generating an image, and a multifunction glass that is fixed to the holding device and has a coupling in area and a coupling out area. The image produced is coupled into the multifunction glass via the coupling in area, guided in the multifunction glass to the coupling in area, and extracted via the coupling out area, in such a way that the user can perceive the coupled out image superimposed on the surroundings when the holding device is placed on the head of the user. The coupling in area has a Fresnel structure causing a folding of the beam path when the image is injected into the multifunction glass, said structure having an imaging property.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 18, 2013
    Assignee: Carl Zeiss AG
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Karsten Lindig
  • Patent number: 8456744
    Abstract: A beam combiner for combining a first beam cluster with a second beam cluster that is not parallel to the first, to form a common beam cluster. The beam combiner includes a transparent body for the first beam cluster, which has a superimposition region that is encountered by the first beam cluster as it passes through the body. The superimposition region is split into a first section and a second section. Only the first section formed from interspaced reflective and/or refractive deflection elements causes a deflection of the second beam cluster by reflection and/or refraction, such that the first beam cluster forms the common beam cluster with the deflected second beam cluster once it has left the body.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 4, 2013
    Assignee: Carl Zeiss AG
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Karsten Lindig
  • Patent number: 8405904
    Abstract: The invention relates to a device for superimposing an image in the beam path of an aiming optics, having an at least partially transparent optical support element which is arranged in the beam path of the aiming optics and has at least one diffractive optical coupling element and at least one diffractive optical decoupling element, the at least one diffractive optical coupling element leading light of the image to be superimposed, which light is incident on said coupling element and is to be coupled in, through the optical support element to the at least one diffractive optical decoupling element for the purpose of superimposition with the beam path. The image to be superimposed is imaged into the beam path of the aiming optics by the at least one diffractive optical coupling element and the least one diffractive optical decoupling element.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: March 26, 2013
    Assignees: Carl Zeiss Sports Optics GmbH, Carl Zeiss AG
    Inventors: Hans-Juergen Dobschal, Guenter Rudolph, Eva-Maria Menzel, Christian Sinn, Karsten Lindig, Thomas Wagner
  • Publication number: 20120300197
    Abstract: There is provided a scanning mirror device with a microsystem scanning mirror which is mounted rotatably about at least one axis, and a detection module which has a light source which emits a light beam, and a position detector, wherein the detection module directs the light beam onto the scanning mirror from behind, with the result that the light beam is reflected, at the back of the scanning mirror, to the position detector which measures the position of the reflected light beam, from which the rotation angle of the scanning mirror about the at least one axis can be deduced.
    Type: Application
    Filed: February 20, 2012
    Publication date: November 29, 2012
    Applicant: CARL ZEISS AG
    Inventors: Stefan Richter, Veljko Milanovic, Günter Rudolph, Michel Stutz, Gerhard Krampert
  • Publication number: 20120229605
    Abstract: An optical observation instrument has two optical transmission channels for transmitting two partial ray bundles (9A, 9B). The optical observation instrument has a main objective (1) common to the optical transmission channels, an electronic image sensor (7) for sequentially recording the partial ray bundles (9A, 9B), an intermediate imaging optical system (3) between the main objective (1) and the image sensor (7) and common to the optical transmission channels, and a tilting mirror matrix (5) between the main objective (1) and the image sensor (7). The intermediate imaging optical system (3) is arranged so that the respective partial ray bundle (9A, 9B) is deflected toward the image sensor (7) and passes the intermediate imaging optical system (3) both on the way from the main objective (1) to the tilting mirror matrix (5) and on the way from the tilting mirror matrix (5) to the image sensor (7).
    Type: Application
    Filed: January 26, 2012
    Publication date: September 13, 2012
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Marco Pretorius, Enrico Geissler, Guenter Rudolph, Christoph Nieten, Bryce Anton Moffat, Artur Hoegele